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1.0 SUMMARY

A piloted simulation study has been made with the objective of advancing

the development of longitudinal handling Qualities criteria for farce suoersonic

cruise aircraft. This work was conducted on the Flight %insulator for Advanced

Aircraft (FSAA) located at HASA Ames Research Center. For this study the

simulator wos programmed with the math model representation ef the Boein_

2707-300PT Supersonic Transport as it existed at termination of the _ational

SST Program.

Areas of study included high speed cruise maneuverinq, landinq approach

for normal and minimum-safe operating conditions, and stall recovery control

power. The results of these evaluations were primarily based on oilot ratings.

Additional analysis capability was developed which consisted of a pilot model

analysis technique and pilot workload measurement techniques. The pilot model

results were obtai_,ed and utilized successfully for some of the conditions

evaluated in the l_ndinq approach (normal operation) study area. Pilot

workload was measured by two techniques; by a side task technique, and by a

computation of the physical work done by the pilot through the control column.

The side task technique was not successful. The physical measurement was

useful in analyzing landing approach conditions where major pilot rating

scatter existed.

The results of this study are a combination of new criteria and modifica-

tions of existing criteria. All pre-existing criteria utilized in the final

results were those developed during+ the _ational SST Proqram. Other criteria

were considered but found to be less _atisfactory, For hiqh speed cruise and

landing _pproach (normal operation), modifications to the SST Time Response

CriLeria, which were based on the Shomber-Gertsen Criteria, . re found to

REV SYM mo+,,,,o ->-



adequately define the handling qualities results of this study. Results {rot

the landing approach (minimum-safe) study were found to be best defined b, the

Pitch Divergence C:iterion established during the National SST Prograr:, Tree

stall recovery control power study has resulted in a new criterion in terns o f

nose-down angular acceleration capability. This criterion has not been pre--

viously established by quantitative test results.

Continuation of this study is recommended in those areas not covered by

this study and in those areas where unanswered questions exist. These areas

are as follows:

o Hiqh speed cruise maneuvering with a simulator having substantial

greater load factor reproduction capability

o Stall recovery with varying stability levels at stall

o Landing flare

o Effect o{ structural modes

o Climb, cruise and transonic speed stability

Future work in the area of handling qualities criteria developmert should

utilize _ generalized math model that includes nonlinear characteristics,

speed dependent derivatives to represent the effects due Lo changes in r.!ach

number and airspeed, and structural modes. Also, it would be essential to

provide the capability to control all of the above and the aerodynanic

characteristics easily. Such a math model would allow , more e_:_icient nroqrar.

to be conducted.

iI
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2.0 ItITRODUCTIOH

RE v SY_

This document presents the results of the piloted si,iul(_tion study _,onduLted

under NASA contract (NAS_P-7966) "Development of Longitudinal Handlin_j _,_ualities

Criteria for Large Advanced Supersonic Aircraft." The purpose of this study was

to improve the data base and handling qualities criteria for large supersoPic

cruise aircraft with highly augmented flight control systems,

Research work conducted during the National SST Program has showp that

important benefits in aircraft economics will be gained through advancements in

flight control system design. These advanced flight control systems character-

istical]y result in airpla-e t'-.'namic response which is not adequately specified

by existing handling qualities crlteria. Existing military (Reference l) and

civil (Reference 2) flying qualities criteria were found inadequate to provide

design gu;dance for the flight control system development o_ the large, low

design load factor, SST aircraft. An extensive set of criteria was developed

and documented (Reference 3) during the National SST Program which was based or:

previous work done by NASA and other investigators as well as extensive contrac-

tor fixed base in-house simulation.

Generalized criteria are required for flight control system design a_idance

for both normal operation and minimum-safe operation. For normal operation,

these criteria will establish control syst.em design requirements, augmentation

system requirements, and the requirements for control surface rates and

authority. Criteria for minimum-safe operation are renuired to establish

minimum stability levels and key elemencs in the basic air;)lane design such as

fore and aft limits of longitudinal balance and tail sizinq derived From control

power requirements.

The piloted simulation study covered in this report was conducted usimq

the NASA-Ames moving base simulator designated as the Fliqht Simulator for
_a...........................
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Advanced Aircraft (FSAA). lwe simulation lesl _eriods were utilized, ,_overir,_#

the periods from May 15 throuqh June 6, 1974, and from September II [I,rou,]h

October 25, 1974. During these two periods there were 61.7 hours of pilote_

evaluation time utilized. In addition to piloted evaluation, these periods

were also used to conduct the necessary checkout work and do the required test

set up and calibration work.

This study contract covered the time period from January 15, 1974 through

March 31, 1975.

!I
REV SYM
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3.0 STUOY AREAS

There were four basic study areas investiqated during this piloted

simulation study:

I. High Speed Cruise Maneuvering

2. Landing Approach Inorma] operati(;n, _

3. Landing Approach Iminimum-s_fe operation)

4. Stall Recovery Control Power

These represent the most important Droblem areas in terms of lon_;itudina_

handling qualities criteria identi{ied during the _dt_cna_ SST Proqranl. Also,

the selection of the study areas was in¢Ijer, ced by the _:).<]icabilit,,. to each

study area of the type of evaluations i)ossiblc_, the faLilitv beinQ used, and the

availability of evaluation test time. Fo,- e_<_, F,i, =. these studies did not include,

evaluation where large sustained load factor was required due to the _imited

vertical strnke built into the motion syster _ o' the FS#,A simulator.

The results of evaluations conducted in eac. _- stud_ are<_ will be ciscussed

under separate heading in this report. Crite_1_ a',r4ved ,,_t in each study area

will be identified in the discussions o': t_le test resu',ts and _,ill be summarized

in the conclusions.

I

.. _B__°_._N_°__ 17 _i,......



a.O TEST FACILITY

The facility used for all evaluation testinq was the Flight Simulator for

Advanced Aircraft (FSAA) at ,_IASA-A_Ies Research Center. This simulator consists

cf a large cab with two crew stations mounted on a six decree nl _reedom motion

system. A visual system is provided at each ;Bilot station by means r_f a color

television system using a terrain model disI_]_v. The. ¢,ntire fa_ilit., is

controlled by _ Sigma 8 computer which, in the case _)f thi'. _,i,'_ulation nvaluation_

d
was orogrammed with the complete math model representutior ,;' t'_e ["._.,,._ir_,;

2707-300PT Supersonic Transport (Reference ._.].

Two cockpit configurations were used for thi_, ,_v,_l_ation. These confiqura-

tions differed in the attitude display instrument. As shown in Fi!)ur,, &-l, thp

mechanical attitude display indlcat,.Br (HZ-6F) was ,_sed _urin(. the first simul_:tlerl

study period and had a pitch attitude display ser.sitivitv c,_ .07 InLhes per

degree (.18 cef,timeters per deflree). The other conti,)uration presented in

Figure 4-2 utilized the electronic attituded|rector indicator ([ADI) which was

developed for the 2707-3OOPT durinq the ;Jational SST i'r_,_rav_. _k_s was "he

configuration for the second simulation study _)eric, d, a,,d hat! a normal [itch

attitude sensitivity of .16 inches per degree (.41 cent r_eters p_r deqree_.

For hiqh speed cruise evaluJtions the sensitivity was increased to .B0 inLk L_er

degree (.76 certimeters per degree_j. The mechan'::al ".[" was Jsed to aCcomplisM

all of the landing approach (normal operation) evaluati )r_except those cases

evaluated by Pilot "F". Th_ EADI was utilized for ,_',] _c the other evaluations

and the details of this display are presented in Fiqure 4-!.

A flight path anqle display was available to the I.-Ir, t in either cockpit

configuration, The display consisted of actual an,'. _'.t_ntia_ _li(;_,t _;ath angle

indicators. With the ADI configuration the angles were presented on two

' 6
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adjacent vertical scale Instruments located to the immediate right of the ADI

(Figure 4-1). With the EADI configuration these angles were displayed directly

on the EADI display sclope (Figure 4-3).

The purpose of this flight path angle presentation was to aid the pilot

in stabilizing the aircraft. When the potential and actual flight path angle

are the same, the aircraft is neither accelerating nor decelerating. When the

potential is less than the actual flight path angle the aircraft is decelerating

and vise versa. With this additional presentation, thrust management, particu-

larly at high speed, is much improved and does not detract from the primary

task of longitudinal handling.

For a more detailed description of the technical aspects of the test

facility, refer to the section of the Appendix titled "Simulation Facility

Description"

This _acility did prove to be a very useful tool in conducting this tyoe

of evaluation. Numerous pilot comments were received that favored the movinq

base feature over a fixed base simulator due to the added realism. The added

realism was especially noticeable when attempting to stabilize the aircraft where

the small variations in load factor were an aid to the pilot.

ROKJNG _,,
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5.0 TEST AND ANALYSIS _ECHrlIE)UE
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The objective of this study was to develop handliml qualiti___ _,-ite,-i _ '_',-

large advanced supersonic aircraft. The criteria were to be develo_ed in ter_:s

of airplane response characteristics with primary emphasis on the lonqitudinal

modes of motion. All experimental results were based on the results of piloted

simulation evaluation using both Boeing and NASA test pilots.

The basic approach taken was to identify study areas where criteria

development was important to future desiqn concepts_ and compatible with a

piloted evaluation study usinq the FSAA. For each study area critical airplane

response parameters were identified based on previous experience ,:ained durincl

the National SST Program and follow-on SST studies. Each parameter was then

varied in a systematic manner holdin(_ all other parameters corstart or near

constant, and piloted evaluations conducted. For some study areas the e_fect

of control force gradient, atmospheric turbulence, and Ditch attitude dis;-_l_.

sensitivity were also evaluated as contributinq parameters tc the handlinr:

qualities criterid. The iJilot evaluations nf each test rendition were done

while flyin_i the simulator through a spn_ifi¢ sequence of tasks which were

standardized For each study area. The p_lots then rated each test (:onditir,n

using the Cooper-Harper ratin,_ scale (Reference 5) for th_ h_indl!n,; ,:,jalities

rating, ar, d a turbulence rating scale (Reference 6) for the cases _n_:!vir.:

turbulence. The pilot also provided comments to sFecific cuestions which _,ere

standardized for each study area. In addition to these evaluation ratinqs and

comments pro,'ided by the pilot, data were obtained consi_tinq of pilot deszrib'r.,;

function measurements, r_ilc_t workload measurements, and pilot perforr:anc,:,

measurements in conductinq the tasks.

The parameters that were varied For the nurnoS_ of this evaluatior ,.._:l be

described in the discussions of the test results coverin:_ eacm studl a.e_. '-'atm



....model configurations required to achieve each specific response charactet_ist_c
1

were defined during engineering calibration runs prior to the piloted pvaiuations i

iThese calibYation runs were achieved by measuring the lonqitudinal airplane

response to either a column step or pulse command while making changes to t_e

math mo_el in the followin(l areas:

o longitudinal SAS t.lain

o longitudinal SAS time constants

o forward loop column prefilter

o airplane center of gravity

o airplane lonQitudinal moment of inertia

o additional tail lift and pitchind moment increments

All evaluations were made usinq the math model of the Boein_I SS- confi:uF-

alien, the 2707-300P_- The math model representation of this aircraft is

described in Reference a.

5.] PILOT RATIt, IG SCALES

Pilot ratinqs were obtained using the Cooper-Harper ratinu scale (Re_erence

5) for the basic airplane handling qualities, and a turbulence rating scale

(Reference 6) to describe the effect of atmospheric turbulence.

The Cooper-Harper ratin_l scale (Fiqure 5-I) was used by all pilots to

describe the lonqitudinal handlinq Qualities immediately after conductin,) Lhe

specific pilot tasks which were standardized for each study area. Two lines of

division were established on this ratinq scale to define normal ooeration and

,linir;ur_-sa+e ol_eration lir_its, lhese limits are the same as used durinq tne

;_d*ional SST Proqram and have been universally accepted. The limitinq pilut

rating 'mR) for normal operation tests was estaL.lished as a ratinn of 3.5.

This ratinq is the dividinq line between a ratinq that requires no im_rove_.ent

(PR=3.0 and one that does warrant improver,ent (PP,--4.0_. Therelrore, ,._aracter-

.....................
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istics thaL result in a pilot raLing of 3. C or better are said to have s_tis-

factory handling qualities for normal operation.

The other dividing line was established in a like manner at 6.S _or

minimum-sa{e operation. This is half way between a r_tin[i that describes barely

adequate performance and tolerable workload (PR=6.O) and one that describes

inadequate performance and an untolerable workload (PR=7.0). Therefore, a

characteristic that is rated 6.5 or better is considered acceptable _or m_niT',u_"-

safe operation.

The turbulence rating schedule (Fiqure 5-2) describes th_ effects atmos-

pheric turbulence has on hand]inq qualities and pilot workload. As in tne case

with the Cooper-IIarper scale, a boundary has been selected that represents the

dividing line between acceptable versus unacc2ptable ratings. This re_resents

the dividing line between a rating that describes a confi_uration where all

tasks can be performed and one where som_- tasks cannot be performed. 7 rat!no

o _ "F" or better represents a condition that is acceptable. A ratinq c{ r'G

or worse represents a condition that is unacceptable.

5.2 'ILOT MATH MODEL

[he purpose for determininq the pilot math model was to sunport the

understandinq and interpr_,tation o{ the pilot ratinq data as well as advance

the state-of-the-ar_ in this area. The apnroach taken was to develoo a method

whereby the pilot rating trends could be predicted based on the nilct describinq

function alonu with additional performanc_ and workload Parameters readily

available _rom the experimental data. In this way configurations resultinq in

larqe oi_,ot ratin,l scatter could be re-evaluated based on the pilot describinc

function technique and an indication of the best data {airinq obtained. This

approach was successful to a very limited degree in the landing dPDroach

(normal operation) study area and was the only study area where this approach

was used.

REV SYM
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II4CREASEOFPILOT
EFFORTI_ITH
TURBULENCE

.... I "'_"

NO SIGNIFICANT

INCREASE

MORE EFFORT

REQUIRED

BEST EFFORTS

REQUIRED

I)ETERIORAT]OFi OF [AS;,
PERFORMANCE _#ITH

TURBULENCE

NO SIGFIIFICAHT

DETERIORATIOFI

NO SIG!_IFICAHT

DETERIORATION B

MINOR C

MODERATE D

MODERATE

NAJOR (BUT EVALUATIOII

TASLS CArl STILL BE

ACCOMPLISHED)

LARGE (SOME TASKS

CANNOT BE PERFORMED

UNABLE TO PERFORM TASKS

RAT I NG

FIGURE 5-2 - TURBULENCE[ EFFECT PAT[FIG SCALE
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Data analysis by this technique requires extensive auditional engineerir_;

effort in both data recording and set up requirements, as well as data reduc:tion

and analysis effort. Also, special oiloted evaluation runs wit_ _;di_{er,_nt

but similar pilot task, wererequired to obtain the necessarydata _,o_analysis.

This technique wasapplied only in the landing a#proach(normal operation'j

study area. This wasdictated by a reduction in available evaiuatinr test tir_e

over that originally planned and the nee_to conduct higher _riority Lestinq.

A description of this analysis technique is included in the a;_pendi×of

this document, and includes the theory bei_indthe approach, the calculation

techniques, data handling, and analysis techniques. The correlation between

the results of this analysis technique and the pilot rating data will be

discussed in the appropriate section of the discussion coverin_ test results o_

the landing approach (normal operation) study area.

task.

REV SYM

5.3 WORKLOAD MEASUREMENTS

The measurement of pilot workload was accomplished by two different

techqiques. One was by the use of a side task for which the performance could

easily be measured, and the second was by inteqratinq the work nroduced bv the

pilot through column deflection over the test ru_,.

Measuring r_iiot workload b v the use of a side task is accomplished by

measurin_l the performance of the pilot in performing the side task. In theory,

an increase in _ilot workload ir Derforr;_in_ the primar.v task, _lyi_- the

airplane_ will result in a decrease in his perfor,::._nce in accomplishinq Liq_, side

task. This should be true if the side task is considered by the I,ilot to b_

only a side task that is to be accomplished on a totally non-interference Lasis

with respect to the primary task.

The side task selected for this particular study was a li,lht cancellir.':

Three li,lhts were located in the cockDit, oroqrammed to come en in a



t

P

P

t

random fashion. The pilot was tu turn the lights off when they did corse on by

pressing the 11ght flxture itself. The performance measurement of this task

was made by averaging the time the lights stayed lit. The longer the ti:r_

duration, the poorer the performance of the side task.

This approach to a side task was believed representative of a normal side

task that would occur in an aircreft cockpit which the pilot would need to

perform during an actual flying situation. Location of the lights was selected

to support this idea. One light was located directly in front o _ the _ilot on

the glare shield. Another was located at the far left of the instr-ur_:t _a_iel,

on the window sill, and the third was located on she aisle stand immediatel_

aft of the throttle quadrant which was just at the edge of his _eripherial

vision. These locations covered the full range of visual scan normally

maintained by the pilot during the piloted tasks beinq flown.

This approach to measuring the pilot workload was not successful. Jests

wheYe the workload was obviously increasing, such as in the case with increased

turbulence, resulted in a decrease, in some cases, in the averaqe t_me the

lights remained lit (Figure 5-3). This was exactly opposite to the exnected

results. The main reason attributed to the failure of this approach _as the

color of the lights used. The lights were amber, which usually denotes a

significant malfunction in the cockpit. The attention, therefore, qiven to tn _

side task was higher than desired. With an increase in work load, the pilot

worked harder to keep the lights off in order to minimize his distractions.

Plans were implemented to repeat this evaluation of the workload measure-

ment technique using the side task with different colored !i_hts, such as blue.

Chances of success with blue lights were believed to be much _Ireater s;_ce it is

a color that the pilot is not trained to look out for and react to. _owever,

this was not done due to a shortage of simulation evaluatiun ti:_e ard hiqher

priority work that needed to be accomplished.

REV SYM
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The second method for measuring pilot workload was to integrate the work

the pilot does through the control column over the test run. This is representec

by the following formula:

COLUMN WORK LOAD = (Fco I x _cel) dt

0

This approach did represent the physical work the pilot was required to

perform and was used to judge the validity of some of the pilot ratinqs,

particularly in areas of large data scatter. This will be pointed out in the

specific portion of the Study Results section where the workload data v_as

successfully used to help interpret the pilot rating data.

represents the normal airport terrain.

REV SY_

5.4 WIND MODEL

The wind model was based on information contained in Reference 7. f,

summary of the wind model parameters is also contained in the appendix of this

report.

Evaluations with the wind model were conducted for all but the hiqh soeed

cruise evaluations that included the landing approach for normal and minimum-

safe operation and the stall recovery control power tests. In all cases the

-3
maximum turbulence level was based on a probability of exceedence of lO which

defines a crosswind velocity oF 25 knots (12.86 meters/second) at the reference

height of 20 feet (6.1 meters). For the landing approach (normal oneration)

study and the stall recovery study, a terrain roughness factor (_g) of l.O was

used which defines the roughest terrain expected in the vicinity nf any a_rport.

With the combination of the wind velocity and roughness factor, the wind model

produces a root mean square vertical turbulence comDonent !C w ',. _dlue 0 _

approximately 7.0 fps (2,13 meters per second). For the laK1ding aD_)roac _

(minimum-safe operation) a terrain rouqhness factor cf .15 _as used which

Justification for using the ;ower



roughnessfactor wasbasedon the reducedprobability of the mini.lu.i-safe

configuration occurring. All probability estimates used in establishin_l th_

wind model configurations for each study area were obtained from probability

studies conductedduring the National SSTProgram.

REVSYM



_J
i

.__ -

I

6.0 EXISTIrlG CRITERIA COMPARISON

I

The purpose of this study was to develop a handling qualities data base of 1
I

aircraft response characteristics that will improve the data base of design 1

criteria for large advanced supersonic aircraft. Emphasis was placed on 'qe

longitudinal axes since this is the area of greatest benefit in terms of

increased airplane efficiency.

Comparisons against existing criteria were done where oossible in order to

substantiate, modify or de-emphasize the criteria established by previous

studies. Where this approach was not appropriate new criteria were established.

By accomplishing the analysis in this manner the strongest data base for long-

itudinal handling qualities criteria were believed to result for those areas

investigated during this study.

The greatest source of existing longitudinal handling Qualities criteria

for this type of vehicle has been from the National SST Program. During the

National SST Program the sensitivity of airplane design to criteria variation,

and hence the need for adequate criteria, was demonstrated. A considerable data

base was established during that program since existing criterla at that time

were found to be inadequate for ma×imum design efficiency of a vehicle of this

type. The criteria from this data base used for comparison purposes were the

SST Time Response Criteria for normal operation and the Pitch Divergence

Criterion for minimum-safe operation. ()ther (riteria used for comparls.),;

purposes consisted of the C* Lor:_itudinal llandling Qualities Criterion and

applicable criteria rron the military handling qualities specigication,

MIL-F-8785B.

The SST Time Response Criteria were obtained from Reference 3. These

criteria are in the form of time history envelopes in response to a ste_ colur:_r

input. Pitch rate and nori,al load factor are the terms used to define these

I
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time history envelopesas seen in Fiqures 6-I through 6-3. Theseenvelo_Jesand

these criteria are basedon the Shomber-GertsenCriteria. TheShomber-Gertsen

Criteria arebasedon the results of several other studies and is expressedin

terms of L_/_J-_ and_/_versus dampingratio (_). By exl_ressingthe resa'ts

of the other studies in these terms the results were found to converaeinto

commonboundariesas detailed in Reference8 and presented in Figure 6-_.

Theproblemwith using the Shomber-GertsenCriteria directly is that they

arebasedon a simple secondorder systemand direct comparisonwith higher order

systems would be inappropriate. However, such a comparison is possible by

comparinq the time history response to a common input command such as a colump

step of the second order system to the higher order system. This was the

approach taken durina the _lational SST Program in develo_)ing the ]onqitudinal

response time history criteria which will be referred to as the SST Time Response

Criteria in this report.

The pl lot rating scale used in the Shomber-Gertsen Criteria was the Cooper

ratinq scale (Reference 8) [)resented in Figure 6-5. This ratin_l scale is a

simplified version of the present Cooper-llarper rating scale (Reference 5),

presented in Fi,lure 5-1. Results obtained with this earlier scale are believed

comparable with results obtained usinq the later scale. The critical dividiro

lines are the same. Thal. is. between the ratinqs 3 _nd _ the airplane handlinq

qualities chan,le fro_ sa_.isfactory (indi(.atinc! no it,lprover',ent necessary) to

unsatisfactory, and between the tatings _ and 7 the airplone handling qualities

change _rom acceptable Lo unacceptable. These are the same critical judgments

made during this simulation study.

The C_ criterion was deri4ed by Boeinrl using fliqht test results from the

Cornell Aeronautical Laboratories (now known as <alspan) variable stability

., air[_lane and the Goeinq t_ode
] 367-:;0 variable stabil4ty airplane (Reference 9).

,IThe criterion consists at a term desi,lnated C* which is comnuted usi_q both
L__

REV SYM _.>_
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CATEGORY

L',,

ACCEPTABLE

AND

SATISFACTORY

ACCEPTABLE

BUT

UNSATISFACTORY

UNACCEPTABLE

COOPER RATING SCALE

ADJECTIVE DESCRIPTION

WITHIN CATEGORY

EXCELLENT

GOOD

FAIR

FAIR

POOR

BAD

BAD

VERY BAD

DANGEROUS

NUMERICAL

RATING

7

rl

Q

UHFLYABL[ 1O,

ADDITIONAL DEFI_ITIOqS OF UNACCEPTABLE CATEGORY"

L

7 BAD - AIRCRAFT COtlTROLLABL[, BUT REQUIRES HAJOR RORTI@_I OF PILOT'S

ATTENT [O_i

R VERY BAD - AIRCRAFT CO_TROLLABL[, BUT ONLY WITH A MJ_IMUM OF COCKPIT

DUTI ES

9 DANGEROUS - AIRCRAFT JUST COIITROLLABLE WITH COMPLETE ATTE!ITIO!;

10 UNFLYABLE

FIGURE 6-5
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pitch rate and normal acceleration. The time history of this term in response

to a column step input must fi' inside a specified time historl resnonse

envelope For the handling qualities to be acceptable (Fiqure 6-6].

Extensive work was done in the area of minimum-safe handling qualities

criteria. The purpose of such criteria is to define the allowable deqradation

of handlin(l qualities (as could result from stability auqmentation syster-

failures) that would still provide safe handling qualitips under erlerflercy

situations. The primary area of importance for this probler is landinc apprc.a_n,:

which was one of the study areas selected for this study cortra_.t. The mir. imu_'-

safe criteria established during the ,_lational SST Proqram were based on the rate

of pitch divergence as the result of a momentary pitch disturbance such as a

longitudinal c;ulse Inuut. This same aFJDroach was taken durin_I this study, and

a typical response is presented in Fiqure 6-7. The diver(Jence rate detert;:ined

acceptable durin!l the National SST Program was a time-to-double pitch a::_plitude

of 6.0 seconds. The diverclence rate criteFion from the ,_ational SST ProQram was

based on the most unstable root. Basing the criterion on the most u_stdble reel

was done _or ease. of control system desiqn. During this simulation stud)' the

r,eti:od for ,:easurin,: the divergence rate is believed to result in a reasuremert

of the T'.:ost unstable root. This allows direct comparison with the '_ational

SST Pitch Divergence Criterion.

The military specilcication, tIIL-F-;_,7_$SB, was examined in terms o _ the

sl)ecified li,,its of short l_eriod natural frequency, l)itch d_mpinq ratio and

column force gradient, llowever, the criteria in this specification have beet

based on i,aru,_eter variations of a second order system which are not directl_

applicable to the results of this study. This study utilizes an actual nor.-

linear a_ro'_ne 1,_ath model and au_Imentatior, sysLem which results in :_itch

res;mnse characte_istics o _ a :'_uch hiqher order than a second order s;'steF.

This '_tudy, as well as the _iational SST criteria development study, was ai_ec

- .....
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at developinq a criteria data base that could be applied to aircraft that

had predominantly higher order pitch response characteristics.
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7.0 S[/UDYRESULTS

This piloted simulation study wasbroken downinto separate study areas each

covering a particu]ar flight regimeor characteristic, The results of the work

done in each study area will be presentedseparately along with a description of

the test techniques and a description of the analysis used.

7.1 HIGHSPEEDCRUISEMA_IEUVERING

tti{;h speedcruise presents a different set of handling cualities require-

mentsthan does low speed, This is mainly attributable to the larqe true

velocity vector and the resulting sensitivity of rate of climb or descent to

lonqitudinal attitude and rate of changeof attitude, Thesernquirementsare

reflected in the pitch attitude display sensitivity requirements, the desired

longitudinal responsecharacteristics, and the importanceof load factor as a

short period parameter, i

Tl_efliqht condition for this evaluation was the condition occurrin!l at the

end of supersonic climb for the 2707-300PTairplane, identified as follows

o l,lach2.7

o 60,000 feet altitude (18,288meters)

o 567 knots CAS(292 meters per second)

o 555,000poundsqross weiqht (251,744kilograms)

o 62 center of gravity (aft limit)

The parametersidentified for evaluation of this study area were the short

period responseparametersmeasuredin terms of pitch rate and expressedin

the following terms

,, o pitch rate overshoot ratio, @max/@ss

o time-to-peak pitch rate, T@
7 max

- o pitch damping! constant, _

I'" " 32



$
These expressions define the pitch axis short period response characteristics

_valuated and are the same parameters evaluated in the landing approach

(normal operation) study area. These same short period responses were also

analyzed in terms of the normal load factor response characteristics.

The response characteristics just identified were developed accordi_ tc

the technique described in the "Test and Analysis Technique" section of this

report. The forcing function for the engineering calibration runs was an

unpiloted column step input.

In addition to the short period response parameters, the effect of varia-

tions of the column force qradient and pitch attitude display sensitivity were

also evaluated. Table 7-[ presents the complete matrix of the parameters J_ed in

the evaluation of this study area. Time histories for the short period resmense

parameters in terms of normalized pitch rate are presented in Figures 7-1 thrcuqh

7-3. These same short period response conditions in terms of normalized

load factor response, are presented in Figures 7-4 through 7-6. Both sets of

time histories have been normalized to a steady state value of unity.

Results of the evaluation of each parameter will be discussed separately ir

the following sections. Under each section the results will be compare_ dc]ainst

the existing criteria listed below:

o SST Time Response Criteria

o C* Longitudinal llandling Qualities Criteria

o Military Specifications (MIL-F-8785B)

The pilot task description for evaluation of this study ar_a is t_resented

in Figure 7-7.

Z

., 7.1.1 Pitch Attitude Display Sensitivity
%

For all testin_ in this study area the electronic attitude director

; indicator (EAD[) was used (Figure 4-3). Variation of the pitch attitude scale

REV SYM
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TABLE 7- I

HIGH SPEED CRUISE HArEUVERING TEST CONDITIONS

PARAMETERS NUMBER OF PILOTS

VARIED EVALUATING (Smooth Air)

EADI PITCH SCALE

in/deg = .]6
.23

* .30

PITCH RATE OVERSHOOT RATIO

Omax/@ss = 1.94
* 4.10

6.10
,q.2

TIME TO PEAK PITCH RATE

TA = .45 sec
t_

max * . 80
l .40

2.0

DAMPING CONSTA_IT

.36

.90
2.42

COLUMrl FORCE GRADIErlT

Fcol/q lO ]b/q
* 25

_5
64

Baseline confifluration

REV SYM
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0

HTGH SPEED CRUISE MANEUVERING

PILOT TASK

ALTITUDE CHANGES (HOLDING MACH NO. CONSTANT)"

i.

2.

3.

,_.

CLIMB 250 FT @ 500 FPM (76M 0 152M/MINUTE) AHD STABILIZE

DESCEND 750 FT @ 1000 FPM (229M O 305M/MIHUTE) A_D STABILIZE

CLIMB I000 FT O 2000 FPM (305M @ 610M/MINUTE) AHD STABILIZE

DESCEND 500 FT @ 500 FPM (152M @ 152 M/MIHUTE) AriD STABILIZE

AIRSPEED CHANGES (HOLDING ALTITUDE CONSTANT)'

I.

2.

3.

INCREASE SPEED 20 KNOTS AND STABILIZE

DECREASE SPEED 40 KNOTS AT',IDSTABILIZE

INCREASE SPEED 20 KNOTS AND STABILIZE

HEADING CHANGES (HOLDING ALTITUDE AND AIRSPEED CONSTAHT)

I. TURN 150 LEFT IN 15o BANK AND LEVEl_ OFF

2. TURN 200 RIGHT IrJ 30 o BANK AND LEVEL OFF

FIGURE 7-7
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wasdesired as part of the pvaludti_n ,,_ this studv are_ since d rlredter sers!-

tivity is required at hiqh supersonic cruise speedsthan at subsoniL _r,ise

speeds. The l_itch attitude scale sensitivity requirement should be rouqhl/

proportional to the magnitudeof the true velocity vector which defines the

relationship betweena changein vertical velocity and a changein pitch

attitude. For example,one degreeof pitch attitude at !4ach2._ r'esults i_ 2___.

feet per minute vertical velocity. At Mach.8 one degreeof pitch chamc_e,es_]ts

in approximately 800 feet per minute _ertical velocity. With the recuire,'e,'t

established for a qreater I_itch attitude sensitivity, the objective was to first

define the optiHum pitch attitude sensitivity and then conduct all other evalua-

tions at that scale sensitivity value.

Three pitch scale values were evaluated as seen in Table 7-I. The results

ol this study _re presented in Fi. ,_e 7-_). Both pilots preferred the ,30

inches/de,l. (.762 centimeters/deq) sensitivity accordinq to the ratings qiven

and according to their comments. They were both given their choice of any c_

the three settings for the remainder of the e_aluation o_ this study area, and

both selected the most sensitive setting. Also, it should be t_ointed out that

this ,_as the f;ost sensitive setting possible with the EADI svste" avai]ablr_.

This wa: due to the spacincl c _ the pitch bars approachinq the lirit of the

screen size available. Pilot comments were received durinq evaluation c,_ othor

parameters indicatinq a _ore sensitive r,,itch scale would be desirable.

7.1.2 Pitch Rate _lvershoot Patio

]he data are i_lotted and faired in l i._ure 7-_. The rairin,; selected Srlo_'vs

the o_tir_u_, _a]ue of over,hoot ratio tu be less than _qe lowest value tested o'

i

".i i.9C. Therefore, a lower lir",it could not be established _ro,' these tests. -_e

upner li:it, tmwever, _s shown to be _.i, w_.ich cor:_I)ares fa._:r_r_ly _ith the

',_e,lk value ,,* 7 (, obtained rror the c,-- i;i,;h Speed Pitch m,_÷_ _r,S,Orse Cr _*_r'_

REV SYM
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(FIHure /-10). llow_'vnr, (i,, s_,(.'n ir_ thi _, fi,lure, the cmit(.rion shows a ti,,_, to

reach thls overshoot ratio as .5 seconds, and for these tests the time to teach

an overshoot ratio of 7.1 can be interpolated to be .9 seconds, which could

account for the slight difference in the satisfactory ma×imum level. By

comparing this value of overshoot ratio and time-to-peak value a!_ainst the tlr:_e

history envelope of the SST High Speed Pitch Rate Response Criterion, it carL be

seen that the limiting response condition would tall just slightly outside the

boundary. Based on the scatter in the pilot rating data, and the fact the

described differences are very slight, no change is recommended in the ui_oe_

limit of the SST lliqh Speed Pitch Rate Response Criterion ti_:e history envelope

as a result of this test.

On the low side of the envelope, however, the SST Hi_!h Speed Pitch _ate

Response Criterion is not satisfactory. Considering a time-to-first peak o _

.9 seconds, as was used for the overshoot ratio tests, the ,:inimu_:; acceptable

overshoot ratio should be lowered. How low it can go and still be satisfactory

is unknown at this time. However, since steady state pitch rate values for a

given load factor are quite low at this '.lath number, it is logical to assume

that pitch rate overshoot ratio becomes unimportant at ]ow va]ues. Therefore,

no .iustificati_n is api;aren_, fo_ _'_quirirLq _J minimur_ value greater t_,_r_ 1._

(i.e. no overshoot). Therefor(:, a recom_,_ended boundary r,odificatic, r. is tc

truncate the, lower b_bndarv at an overshoot ratio o¢ i.O. The ini/',:" resT;;_rsc,

rate at low overshoot ratios becomes the irrportant parar.leter, and will be

covered in the next section.

?, _.omparison with the SST l;iqh Sipped [.oa(_ Factor Pes[,onse Criterion ¢o,"

the sa,"e set of responses .iust discussed is presented in Fi,:.,,-_ 7-11. T_, loac

factor res_)_rses do not compare favorably _Jl_h th_ criterion. "his :so,"

comparison could be attrihuted to the fact that the. systeT e_a:_ateG is ,.: "_.'.m

represented by the cFiteFior. Thi_hiqher order than the second order one
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I

particular set of response conditions does not behave like a second order s_ste,, i

The pitch rate time history envelope comparison is much better for this set e _

conditions.

Another point to be considered when analyzing any load factor response data

is that the motion system used for this study had very limited vertical tra'.el

(+ 4 feet or + ].22 meters), and therefore, limited load factors reproduction

fidelity. This limited capability could account for the poor comparison with

the criterion. Therefore, it is recommended that additional work be conducted

in the future in tile area of high speed handling qualities usinq a mevinq base

simulation with greater load factor reproduction capability.

The military specification (Reference 1) criteria, expressed in terms o _

natural frequency (_) and n_ , is compared against the results of this test in

Figure 7-12. As can be seen, all points fall within the satisfactory range, even

the point for an overshoot ratio of 8.2 that received a pilot ratin_I of a.O.

Aqain, this criteria is based on a second order system whi,:h is not representative

of the system evaluated.

A comparison was also made with the C* criterion and is presented !r,

Figure 7-13. This comparison is for the baseline configuration which was <ive_

a pilot rating of 2.5 and 3.0. Since the C* response con'muted violates the

satisfactory boundary, there is disagreement between this criterion and previous

conclusions. In this portion of the fli_lht regiue the reason is attributed to

the differences between the r,_ of the ,qath r,)odel used in tPis evaluatio_ e,;d

the test aircra*t (variable stability F-94) used in the develol)ment of the

criterion. The 2707-300PT math model has a low n compared to the F-9_

aircraft. This effect is seen in Fiqure 7-13 in the increased rise time c _ L*

over that defined by the criteri n. This increased rise time is primari]# _ue

to the load factor contribution to the C* parameter.
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In conclusion, the modified SST lligh Speed Pitch Rate Response Criterlon

is the best criterion for judging satisfactory pitch rate overshoot ratio

characteristics.

7.1.3 Time-to-Peak Pitch Rate

This parameter gave the greatest variation in pilot rating of all the

parameters tested for this study area. The results are presented in Figure 7-14,

and include the estimate of the satisfactory limit.

As was the case with the overshoot ratio parameter, no lower acceptable

limit could be determined from these tests. The lowest limit tested was ._5

seconds, which gave the most satisfactory pilot ratings and compares favorably

with the SST High Speed Pitch Rate Response Criterion (Figure 7-]_). Lower

values are not believed to be of practical interest for larqe aircraft due to

other aircraft parameters such as pitch inertia or structure modal character-

istics causing the predominant restrictions. Therefore, the upper lit:it is the

only concern for this evaluation, and is estimated to be 1.2 seconds.

Close analysis of these results indicates the pilot is not evaluating the

initial response, but is evaluating the duration the overshoot exists. This can

be exemplified by comparing the time history curve for the T_ of 2.0 seconds
ma×

(Figure 7-2) which was rated 6.0 and 7.0 with the time history curve for the

°

@max/@ss of 1.9_ (Fiqure 7-i) which was rated 2.0 and 2.5. Both curves have

nearly the same initial response up to the steady state value. The difference

is in the overshoot magnitude and duration. [n this area the SST High S_eec

Pitch Rate Response Criterion is very accurate in defining satisfactory limits.

These test results compare very well with the SST High Speed Pitch Rate

Response Criterion (Figure 7-15). The time-to-peak of 1.a seconds is _ust

outside of the pitch rate time history boundary and is rated slightly u_satis-

factory. The time-to-peak of 2.0 seconds is considerably outside the boundary
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and the pilot ratings definitely reflect this. The only area of any slight

disagreement exists with the time-to-pe_k of .45 seconds. This does slinhtly

violate the boundary on the low side. However, it should be remembered that

this portion of the boundary is definitely in disagreement with the overshoot

ratio test results, and should be modified as recommended in the discussion of

those test results. With this recommended madification to the boundary, the

response for the time-to-peak of .45 seconds will then not violate the pitch

rate response envelope.

These same responses expressed in terms of normal load factor in comparison

with the SST High Speed Load Factor Response Criterion, are presented in

Figure 7-]6. This comparison is reasonably good in that both time h_stories

for condition rated unsatisfactory are definitely outside of the envelope.

The other two conditions which were rated satisfactory are just within or

slightly outside the boundary. However_ the pitch rate envelope criterion is

judged more accurate in defininq satisfactory conditions for this type of

response variation.

These same test conditions were compared against the MIL-F-_785B natural

frequency criterion (Figure 7-17). The results of this comparison cor_pare

favorably with the pilot ratings received. Meeting the Level I boundary is

considered necessary for normal operation. In this respect the T_max value of

1.4 is just inside the Level I boundary, and was rated a.O and 4.5, which shows

this boundary to be optimistic.

In conclusion, the SST High Speed Pitch Rate Response Criterion with the

lower boundary modification was found adequate for judqinn satisfactory levels

of time-to-peak pitch rate with the corresponding overshoot ratios.

7.1.4 Pitch Damping Constant

This parameter has the same basic characteristics as the other parameters
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tested in that only one limit, the luwer li:'_it in this case, was idertified.

The results are presented in Figure 7-18, and show a r]inimur' s_tis_actory lin'it

of _= .55 fo_ a pitch overshoot ratio of approximately 4, and a t_,_e-to-:ea_

of aDi)roxir_ately .9 seconds. Analysis of this data is believed to be ve_-.,

straight forward. The pilot rated the low damping case as u_acce._tah!_ d',e te

the oscillatory nature of the aircraft response. This is verified by the _,i!ot

comments, and is also supported by the SST High Speed Pitch Rate P,es_onse

Criterion, The comparison is presented in Fiqure 7-19. The response for the

cJ_= 36 condition was found unacceptable and violates thr_ envelope on b th

the low and high side due to the oscillatory tendency ol this response. Lll

other measurements ol this particular- response, such as the _Jversnoot _atic_ _nd

time-to-first peak, would h,:_ve otherwise been satisfactory. The other two

responses are well within the envelope and are rated satisfactory.

A comparison o_ these same conditions expressed in ter:::s o_ ]gag _actor

response with the SST High Speed Load Factor Response Critecion is orese_Led

in Figure 7-20. This comparison is reasonably good in that the tir.e hiStOry

curve for the _J'_ = ,36 condition definitely violates the envelope a_d receivec

unsatisfactory pilot ratin_}s. The uther two time histories are ,,los_, to the

boundary with one sliqhtl/ outsido. This envelo[_e __omr,a,-isor. is Sensitive' and

judged not as qoo(] for corrparison as the i,itch r,:_te _nv_lo,)(:.

Comparinq these test conditions with the !,!IL-F_g7£SB frequent, :riter:a

(Figure 7-2]) qives the e×pected unsatisfactory results with al _ data orimts i,

the satisfactory region. However, this speci{ication covers dar_pinc se[_aratel',

b_ dei_ininq a satisfactory i-ini_um volue o c dampir.q ratio ! _ ". For this

particular aircraft confiquration the lowest satisfdctory valur, e _ _ , se_c

by M[L-F-8785B, is 0.30. The minir_:u_': satisfactory value deter":rec _ro- t_e

curve in Fiqure 7-20 was _ 0._4, which Shows _IL-F-_7'_SB t:, be s:i,:htl_

optimistic. This value of ,_ - 0.3a is obtained bv ravin,: t _ -'_"'_" set's-

L
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r

factory value of _&_= 0.55 and dividing by _f_= 1.6 tad/see, _h,ch is "Ke .::'_e

of L_r_ at the test conditions on either side of the intercept noint.

Therefore, the High Speed Pitch Rate Response Criter,on v, ith the lone.

boundary _;odification is judged as the best method for predictinc satisfactory

characteristics for the pitch damp-;nq response parameter.

7.1.5 Column Force Gradient

The results of the colur, n force qradient evaluation arp i_resented it.

Figure 7-22. With the sul_ll amount of column deflection north:all,/ used at the,

high speed cruise tliqht condition ( + 0.3 inches or + ?.q centir_'ters', the

level of the column force gradient is found to be relatively unir'portant. _he

MIL-F-8785B limits are also presenttJ in the above figure for refererce.

Nc specific gradient li_rits are recom:_ended as a result o_ this e_a_ .... .:_

The nominal column force gradient is estimated to be approximately _0 ILs,/q

7.2 LANDINr" APPROACH (NORMAL NPERATION)

The purpose of this secti(m of the study was to develop lonqitudinal

handli:,q qualities criteria based on airplane response char_teristics for the

landing approach portion ol the mission. For this particular landinq approach

study the criteria was to be applicable to airplanes landing} under r, orTYa_

operating conditions as differentiated from airplanes landinq under r'iniru .... sa!:e

operating conditions, as will be covered in the next section.

As described previously in this report, the criteria is based o_ air; line

response parameters. The parameters used to evaluate this study area were

as follows:

.

o hitch rate overshoot ratio (gmax/@ss)

o time-to-peak pitch rate (T_ )

o pitch damping constant ( _ _ )
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0 column force gradient (Fcol/g)

The column force gradient is applicable since it is a measure of the feel the

pilot has for the longitudinaJ response characteristics, even though this is

not a response parameter as such.

The complete matrix of parameters evaluated is presented in Table 7-11.

Included in the table are the conditions under which the evaluations were

performed, special tests measurements taken and number of pilots evalbatin(_

each case.

The parameter variations were calibrated using the response from ar

unpiloted column step command. To obtain the desired variations of the above

parameters, changes were made in the pitch SAS by adjusting the gain and filter

time constants and by changinq the column forward loop prefilter terms.

The pilot task is presented in Figure 7-23. This pilot task was I_erformed

by all pilots evaluating the landing approach configurations for both the normal

and minimum-safe study areas. When conducting the landing approach _ilot task

the visual scene was fogged over unti] an altitude of 200 feet (61 meters) was

reached, fit that altitude the fog was lifted and the pilot continued the landinc

through flare and touchdown using the visual scene.

The initial flight condition for this evaluation was the norma] landinQ

approach conditions for the 2707-300PT airplane as follows:

o 1800 feet altitude (549 meters)

o 144 knots CflS (74 meters/sec)

o 415,000 pounds qr(iss weight (188,240 kilograms)

o 54 center of qravity (forward limit)

' 20 deqrees flaps

< qear down

Considerable scatter exists in the pilot raLinq data obtained. Pilot

technique, simulation experience and the large number of pilots used ¢or tkis
................................
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TABLE 7- I

LANDING APPROACH (NORMAL OPERATIO;I) TEST CONDITIONS

PARAMETE R
VARIED

Pitch Rate

Overshoot Ratio

@max/@ss = ].12

*].67

2.]2

3.24

Time to Peak
Pitch Rate

T" = l. 0 sec
@max

"I,5

2,0

3,0

Damping Constant

uJ-_ - .16

.56

*.75

l.lO

Column Force
Gradient

Fcoll9 = I0 Ib/g

28

*50

71

87

Smooth Air

3

NUMBER OF PILOTS EVALUATING

Turbulence
Evaluation

Pilot

Describing
Function

2

1

l

l

I WorkloadSide Task

* Baseline confiquration
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r

I" ->-" " 65



! ............................................

L_

LA_IDITIG APPROACH PILOT TASK

I. START ON RUNWAY HEADING OFFSET TO ONE SIDE OF

LOCALIZER AND BELQW GLIDESLOPE

"_ CAPTURE LOCALI ZER
L-.

3. FLY STRAIGHT AI'ID LEVEL TO CAPTURE GLIDESLOPE

4. AFTER STABILIZI_'LG O_I GLIDESLOPE DEVIATE ABOVE

GLIDESLOPE BY 3/zl TO ONE DOT HIGH ArID STABILIZE

5. RECAPTURE GLIDESLOPE USI_JG NORMAL TECHNIQUE

6. CONTINUE APPROACH BREAKIT_G OUT OF OVERCAST AT

200 FEET (61 METERS)

7. CONDUCT _JORI4AL FLARE AND TOUCHDOWII ATTEMPTING TO

TOUCHDOWNAT THE I000 FOOT (305 HETER) MARK

REV SYM
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test series, contributed to the scatter. Usinq a large nul_,ber of pilots is

normally advantageous, if all can Fly all or most of the test conditions. [n

this case some were used only to obtain a few data points_ some evaluatiqr: as

few as one or two test conditions. Familiarization was, therefnre, not

extensive for some of the pilots involved and rechecking and repeatinq of

questionable data points with the same 13ilot usually was not possible.

7.2.1 Pitch Rate Overshoot Ratio

The time history responses of the parameter variations tested are presented

in Figure 7-24. These time histories have been normalized to a steady state

value of unity.

The results of this evaluation are presented in Figure 7-25. As mentioned

previously, considerable scatter exist with this particular data. The fairirg

is based on a complete analysis of the data including a comparison v. ith

existing criteria.

The greatest amount oF scatter occurs at the overshoot ratio of 3.24.

Some insight can be obtained by comparing the results with the SST Low Soeed

Pitch Rate Response Criterion (Figure 7-26). As can be seen in this comparison,

the overshoot value of this test condition does not exceed the n,a_ir,um value

allowed by this criterion; but the time history response does f_ll outside the

envelope due to a greater response lag than allowed by the criterion. Pilot

acceptance or lack of acceptance of the qreater lag could eyplain t_e amount o _

scatter and the unsatisfactory pilot ratings. The best location for the

fairing at this maximum overshoot ratio point was selected as the center o _ the

I
scatter.

The very low overshoot ratio value of l.l results in _arq_nal :.ilot r_.t!ncs_

This is predicted by the SST Low Speed Pitch Rate Resncmse Criterion, as see_

in Figure 7-26. lhe initial response of this configuration is _uSt i_si,Je the
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-" ,-, _7
!



L .... if i i i llnlr.....



L

% ¢a..r'._ = .'7_

0
I-1 _,

c-

U

_8

I

U

.0

/1

/1
/1
11
..1
11
11
,t

4
,I
,1

E}

I
. _/m,._" T...M.Vt.,I_.

,.

0

[]

_.._A -j
J

____I I I 1 1,._, £,. _'._, ._.o

*"°: t _-2
tel d_gl •

'_._q:;a,a',t_ .i_2_PW.._l:x,(2_,a, _.%/_,,M),.J,,_X.'X" _Olq,



"0

_f

:¢
0
I,"
J

8,

0

' " r ' ' ']

CALC

/

Ci-i ECK |

7

,LO llilll C

i RIEVI$1[O DATE

_'\G 7 ._. io

70
i iiOO_

L



envelope. Res,,,Its front this Lest indicate the envelope to be sliqht!y

optin istic.

the results of the turbulence evaluation of this parar,.eter is ',_resertec ir

Figure 7-27. As can be seen, the variation of this parameter does not result

in different turbulence ratinqs. Also the highest level of turbulence di:_ not

result in an unacceptable turbulence rating. Therefore, no additional

restrictions on the criterion are required as a result of the turbulence

evaluation.

As a result of these tests, the SST Low Speed Pitch IJ{Jte Pesponse Criterion

is demonstrated to be a valid criterion for evaluating Lhe pitch rate overshoot

parameter, considering the test accuracy.

7.2.2 Time-to-Peak Pitch Rate

The time-to-peak i_itch rate time history responses normalized to ,I steady

state value of unity are presented in Figure 7-2zi. For the response with long

time delay the steady state value was difficult to obtain. For a ti_e-to-r)eak

t)itch rate of 3.0 seconds, the best estimate of the steady state valu_ _.as used

in derivin,[: the normalized tirr_e history.

The results of this studv, correlated with pilot ratin(Is, are preserte_J

in Fi!lure 7-2B,. Aqain, considerable scatter ezisL_)par-ticularl/ at the two

longer times. This scatter, along with the deqraded ratinqs, is _-': tf.. the

high pilot workload. The inteqrated workload r"easur('_ents show t_s to ,er:uire

the highest workload by the _,ilot in ter_'s of physical colu_n work. _)i{rerent

Dilots rate this effect very diCferently, deDcnding on their backqround and

experience, and personal likes and dislikes.

Comparing the Lime history resaonses to the SST Low Speed Pitch _ate
i

Response Criterion shows that criterion to be unsatisfacto__ _or t_is i,_,ti_iar

L

parameter (Fiq_e 7-29). As can be seen, all response ti_e _istcries _'e

i
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substanti,_lly in the mw_lorm e/_el,t after a time period of seven seconds. The

additional constraint concerning rise time (constraint 2 in Fi_}ure 6-a) is of

no benefit either, since _ne overshoot for all responses is always greater than

20% of the steady state value. The criterion is not judged applicable to the

time-to-peak pitch rate response parameters evaluated. An additional cnr_frainf inl
i
i

terms of time-to-peak pitch rate is recommended as follows the ti,_,e-to-peak

pitch rate to a column step input should be between 1.1 and I.P_ seccr.cs i _ al"

other criteria are met

The turbulence evaluation of this parameter is presented in Fiq<_re 7-_3.

By ComDarinq this figure with Figure 7-28, a direct cornelati,:_r between, t_e

pilot ratinqs :_nd turbulence ratings can be seen. f'll .:onfiqurations, e:_:er, t

the baseline, _-esult in unsatisfactory pilot ratin<Is and unacc_!,table turbJlence

ratings at the turbulence level of 7.0 fr, et/sec (2.13 meters,'sec), tlo recor-

mended changes to the handling qualities crite, ion as a result of the t_,rb_,lence

study are necessary.

7.2.,3 Pitch Damping Constant

The response time histories of the variations of the _.itcK dar[iq'; _:c_stant

are presented in Figure 7-24. These time histories, as are all others, ar_

normalized to u steady state value of unity.

Correlation of the pilot rating data with the variations o _ the uitc_

damping constant are p_esented in Fi,lure 7-31. These data show ,_ood _erre:at_or,

with less scatter than the data for the other parameters with the e_:_e,_;ticn o _

the rating of 2.0 given by _ilot "C" at the minir_um damDinq case. Ar.alysis e #

the performance achieved by pilot "C" for this case shows unsatisfactory control

of pitch rate in comparison to the ratin_l given. Control ot _itch rate by

pilot "C" was essentially the same as thdt ,_chieved by both [,ilot '#' and "B .

These twu pilots rated this confi,Junatlor, £.0 and 4.5 respectively. Co,'_mer.ts
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received from this pilot indicated a st_-ong desire for light columr, forcps

(see Appendix [). This reduced pitch damping probably appeared as a reduced

column force gradient in transient maneuvers, even though this was not the

steady state case. In turbulence this same pilot gave an unacceptable pilot

ratin(] for this same condition. (Turbulence rating ="H"at O"_ = 7 fps (2.13 nlsec
W

rms). For these reasons this particular data point has been disreqarded in

making the fairing.

Also, additional information can be obtained b,/ comparin_J the ratin_:s

given by [)ilot "C" and pilot IIAll , using the pilot iI_ath niodel analysis teceni.tlue.

This analysis technique consists oF a method for correlatin_; p_lot ratings based

on the pilot describing fun_.tion developed for each test condifion (see

Appendix B For a detailed description). The results of this analysis techni,'_ue

are presented in Figure 7-32. These results show that the ratinQ by pilot 'C"

at the _);.,value of .16 should be raised by one unit. It also shows the ratine

given by pilot "C" at the baseline case should be lowered by about one half

unit. If these changes were made, the shape of the results From pilot "C'

would be more compatible with the other results, but lower. This analysis

tends to support the data fairing selected.

Comparinq the data a(lainst the SST Low Speed Pitch Rate Response Criterion

(Fiqure 7-33) shows that all resl,onses rleet the criterion except the minimuT_

damped configuration. The conFiquration of maximum da,|pinq does not violat_

the criterion or even ap_)roach the boundary which does not aaree with the

results of this evaluation. In general, the SST Low Soeed Pitch Rate Response

I
Criterion will allow pitch dampinq of qreater and lesser magnitude than was

rated s,_tisfactory by this IJilot evaluation.

The results of the turbulence evaluation of this parameter a_e Dresented

in Fi(lure 7-34. These ,-esults show unacceptable turbulence ratinqs onl'¢ at

the i,;inimum damped configuration (_u_z-_ .!6). Th_ other end of t_(. sE_ectru _
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. _r

(_= 1.1) was not evaluated in turbulence. '_c cmin,',e to the criterion is

recommended as a result of this turbulen(.e evaluation.

additio,_a] pitch da.lpin_; criterion be established that requires t_e da_:_in{:

constaht to be between a ] z_ value of 0.5 and ].05.

-m

7.2.4 Column For_.e Gradient

The colur_;n force qradient was evaluated in co_'_binatior with the resbons< _

i_ara:'_ters iust disc_.ssed. Thi<. i% not, strictly s ,oa_ir,. a re% ,ors_

parameter, b..,t _s a ;'eusure ,,f the r, ilot"_ _eel of the lo_,'it:Jcincl a_is, _c

was considered applicable to this sir:ulation stud'/.

Results of this evaluati'.:.n are presented in Fi }ure .-_£. ']cnsiJera_'e

scatter is indicated t)articularlv with th,. low pilot ratinqs :ivnr "y ,-4" *

"C" at the low. column _or..:e ,;radient. /_s stated previo'jsl/, this _i]o11

indicated a st.'onfl desire for lower colurm forces. /',n analysis ct t_e perfo_ ....

ante achieved on the runs where these low ratinqs were r:iv_r, shows that control

of pitch rate was severely deqraded, in ;)articular at the 10 lb.,(] r_',_, ",/';i

condition. This Herfor:,,ance does not _;:atch the pilot ratin(Is qiver. For this

reason ratinfls ,liven by' ',_]ot '(." at the low co]umr qradiemts were _ot

considered in _airinfi the data.

The resul1:s of this col,jr _ %roe qrad_pnt. _valuatio__. in_i_at_..._ _ *_,*.... e ('_",.

gradient between 25 and _5, pojnds net '":',, _,_[]_ an _7:). . "'",,.,) _o._,_d be s_<_'a:'9. _,

for ]andinq apiar,._Ich. The '::_litary handlin,; qualitles specif_r.atic_ '1:L-r--:"_5_ '

indicates the cnlumn ,;radiemt range ShOuld be between 75 and !09 pOundS ,_er :'

(333 and _I'_r" _lq) ..........._ ro_ a wheel controller _,)r a level ] chara,_ris _ -_s

'4[L-F-_7-}SB cri _e_'io_ is !n_iuenced by 'he. relatively _ow, li,_t, 1,0at _._"" ' "_..

" ' ' ¢. ";'S) a_d _he ,_:,'.*i_ r._, s"/:'" .d'_ ."2797-YnOPT for ,_mdin,; approach "_t. ""
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does not tumpare with the results Obtd_np,,_ it, this evaluatior. Thereto<{:, _,-e

colu,n force ,iradient recommended criterion is 25 to 85 pounds per "Q" (!]] tO

al(].... _11.._' " _-k 4-k_ _n_''_ .......... _IIIE_ F_O{n_] q(_ pn_,n4< r,_r II fl I I ( _ 2_ _ / q ]

The turbulence evaluation of the column force qradient is presented i,-

Fiqure 7-%{.. Acceptable turbulence ratinqs were obtainec !or Jl] csr_fiqur-at!cr:_.

evaluated in turbulence '_× ..... I ]9 . ........... _._ the IL.,'_ con_i_luration Sinr_ the _ _"

conti,luratibr, was jLjdged unsatisf_ctur.7, no chan.ie to the .' ]:j,r. 'orse <Yadi_.-_."

criter_or_ i_ recommended aS ._ result of t_is turbulence oval_dti¢'c.

7.3 LA;_D['.i<_ APPR(}AC!! ('_I<It,!U!.I-SF.FE 0PER#,TI0t_)

The l_url]ose of this study area was to determine a criterion that G_c'<es

the R:inir'u_:, acceptable level o{ longitudinal stahilit7 ,nQe; ,.;hi,:_: : s_;e

approach and landing can be conducted. This rdnimuP; acceptable ]eve] is

de;ined as that resultinfl in a pilot rati_ o: 6.5 om th_ /oo;.er-Har;.er :,'_'"

ratin,: scale (Figure 5-]>. Tke task for thHs evaluation was the sate _s t_.GL

used in the normal o_)eratio_ evaIJation o; :andin,: aD:_roach !Fi,:ore 7-2_].

Previous studies durir,{; the National SST Progran' yielded a c_ite_:c _ _,

tetras o" L_itch divergence rate resultinr; fror_ an initial dist_rbaPte s__' ;_. :

colui,_ ,,_]se _n;_ut. Also the r,aneuver ;_oint location Or ;"ane_,/er rare "" ".::/

been found to be of siqnlficant interest. !_owever, t_e ':i_er'_e_r.e ,'_teri< ".::s

_n the _;ast _e_ _ the. .... ,JSt i<:,_t._nt since it does imtl,_de tree e_ec[s :_ s. ee:

.Jiv_rqente ._n4 thus th_ , ;'_.t o; s_;eed ,Je',e_deqt Std_lit. ter"% _s _e "_ '.s

the actual , easure_"e_t o _ stati,, stability. Zot_. the ;_it,._ _ :ti','e,":e__,. ,._.'._- _,::

"a,_e_',er ar;i,-, _a,. _ee.'. ,..<_";,a,r,:! a,:a'_st t_e test _esG!ts. Table _-:::

:_resents t_,e ;.arareter ,a_.,_s ,_r.] test: ,L<OrditiC_5 _ " '_'" "_" St_'.' ""'-

_" +

I
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TABLE 7-111

I.ANDING APPROACH (MINIMUM-SAFE OPERATION TEST CONDITIONS

FARAMETE RS VARIED

T
2ca

9.2 sec

_B.2

7.1

6.O

5.0

i

15. :!:

12.5

2.0

!IUt'IBER OF PILOTS EVALUATI:IG

St'1OOTtl AIR TURBULETICE

I 1

2 2

I 1

2

2 I

2
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that pitch attitude is the l;_i,:ary airpl,_ne motion "cue' that the pilot is

attemptinq to control durin_ landing a!_proach under the miniT_:ur-safe co_di':ic r.

The disturbance input was a small column pulse (_2 inch (1.27 certir_eters' _or

'._ secondl in the nose-up direction. The nose-up directior v,'as selected because

that is the divergent direction of most concern to the pilot due to his concern

about mainta;ninq airspeed and avoidinq possible stall.

The configuration selected that would result in a _)itcP_ attitude diverqence

under the condition described in these tests was flown wit# the handlin G

qualities SAS turned oif and with the minimum-saCe auqr!entatior rhard S#S_ :.r.

Variation of the .',ivergence rate was achieved by varying] the gain C_: t_e

minimum-safe auQmentation. Also, the aircraft center o _ _;ravity was sele,.:ed

at a value that _esulted in as near an exponential divergence as possitle _._tr

a minimur_ of initial delay. This also results in the most unstable root

predominating and direct measurement of that root as possible. _;s it turned

out, this cg selectlonwas exactly the basic airplane maneuver point <50 C_ '

The divergence rat_ evaluation results are presented in Fiqure 7-37.

These results show that ,_ diverqence rate of 5.6 seconds -an be .'__lerated dt the

w.n_t _vpr_ turht_loncm level {;valuated. This turbulence level, havinq e root

mean square ve_-tical tu_bulence cor_:onent (_ _i,proxir;ately ,I .'-'.,s, _I.22 m/gar',

had been previously selected durin(l the National SST Program as the worst prob, able

turbulence considerinq the l,robability of encounterin': tPc. ,-iri:':u_-sa¢e

configuration. Th_s was based on a Drobability stud_ t_dt _.oncludeg the

combination of this level uf t.jrbulenc_ occurrin,i in co_ bi_ati_n w'th tl_i_

airplane COnfi,luration to be e×tre,,ely ,e_'_ote. Fo,- _r.,, _e_, COm_';L, ratior tr._S

probability study would have to be exercised a.la_m to estab]is_ ire req'_re:

turbulence level and, therefore, the acce[)table diverqen(.e raft. For this

reason the data just shown in Fi_lur_ 7-37 _as bee_ cross-rlo't '_',_ ._'_-;;,'st t _'

turbulence le,el at the pilot ratin,i oF _,.5. This ,:rr,sS-:.lctted data ,s s'cw,

{
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in Figure 7-38 and represents tne _leneraliz_d {orm o,_ the divergence irite,i(r

recommended l:rom this study. Duri_g the Uational SST Proclrar d dive_cer,_.e

criterion value of six seconds fo_ _ the most unstable root was selected, .,,_,_ich

is the hiqh side oi the scatter and, therefore, substantiat*s the _es_ts c"

this evaludtion (see Reference 5).

J

7.3.2 f_aneuver f.larqin

The results described above were also plotted a_aimst Fdneb_er :'ar_. :_

The maneuver _T_arqin is not believed as qeneral a parameter ..:s the ,_.itcr

diverqence _ate since it does not consider airspeed variatiert. The result _ :re

preset, ted in Fi,lure 7-39 and show an [-! percent T-,aneuver ,',,r,,i_ r_.q_,1,'e,'e_t :;t

the maximum turbulence level evaluated.

7.3.3 Sudden Degradatiou to t.liniHum-Sa£e

Included _n the blannin_', for this test series was an eval,,atic;r to deter"ir '_

the effect of the pilot learninq curve when conductinq a _,on'_ !_ries o_

minimum-sa{e piloted evalL'aticns. In other words, does the ,,,ilot learr, hey, tc

fly the ',:'ini u_-saf_ .lJrI,l,lne confiqurations, and then give bett_r rat<nqs that,

{ai;ure whet he had been 'l,,ir.q an ai_,,,lanu with ,iced n_,rr.al hand" ;n_: ::_a!_ties.

Thi_ lu_:.Lion WdS appr_ached by a test ser_es desi,;ned to ident_f_ t_!s

proble_:_. These tests wo_ _.ertur,,ed at the end o{ a series e _ tests in_est-',.:-

tin,i norr_al landinq a;_bFC,,_tt-, har, dlqnq _.ualities. The ;!let initiated t_,: tes"

run, _nd durin_l the run tin, h,_ndlin,l huaiities S/',S was t_r_ed t_, whic _

revetted the airplane, tu th,, :_irii:;uF,-safe augn.en',tior_ _'i'. _ h.:_,'. L_'r'_. _'_._. "

;or the desi,'ed diveF,le_t,' _.,te level. ,_lso, th,, _ente_ ,' ' .

• " "" _, " "_ # (-,t; re_ ,,:_sl. establisheJ ,_t the _:sition _e,,ded _r:, _,_ rl _r; ,,, -' _'_' .C r_i '_"'_.

The data boints de',i_tin,; "h _ _ ........ -,
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The first time this evaluation was attempted it was done Cor a divergence

level of 5 seconds at a turbulence level of 4 feet per second (1.22 meters .)er

second), a configuration previously rated 7.0. The normal configuration which

existed at the start of the run had been previously rated 3.5-4. The degrada-

tion to minimum-safe was l_c_rfor,led as the pilot was deviatinq abuve the

_llideslope as culled for in th(, pilot, task description. I_",mediately following

the run the pilot was asked to concentrate on the latter part of the run ar.d

was given no other" information, and was not aware the configuration chanqe:

during the run. The pilot rating given was 4.5 instead of the previous _.'},

which was opposite to the expected trend. This lower rating was nrobabl_ d_e

to the influence of the first part of the run which the pilot could not ignore.

A second run was immediately made, leaving the airplane in a minimum-safe

configuration that existed at the termination of the previous run. The nilot

rating for this run was 7.0, which was exactly the rating he had qiven this

conliquration during the test series where he was evaluating minimul:_-safe

conti,juratiens. Fro_ these results it was concluded that there was not a

significant learning trend established durinQ the minimum-safe evaiaat_on

series that affected the pilot ratings in an optimistic direction v,i_ich we_ld

cause c_mcern. Additional runs were made using the sudden degradation tec_'_ue

at the same diver!]en(.e rate, but at the lower turbulence levels imr,ediatel,

follt)_in(l the series lust described. The pilot was aware during these ruts 0 _

the iJurpose of the tests, but was not aware as to what run the suddnn JeflYada-

finn w.)uld occur. He successfullv identified each ti_'_e it did occur, ever

thou,li_ the runs wet,, randomly mixed with runs where no deqradaticn _.ccurred.

As ,_n i_e seen in Fiqure 7-37, the ratinqs were again the same as had beer :<yen

REV SYM
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previously during the minimum-safe evaluation series. These additional results

i support the previous conclusion that whatever learning occurs durinc a !or,.

.................................



.................. I' I' I I l .... '

series of flights with degraded configurations does not result in optimistic

ratings with this particular nilot.

7.3.4 Column Force Gradient

The effect of column force gradient was evaluated and the results are

presented in Figures 7-40 and 7-41. Reducing column force gradient to as low

as 15 Ib/g (66.7 N/g) had no effect at the criterion limit of T_ = 6.0

seconds, as seen in Figure 7-40. Reducinq the column force gradient did have a

significant effect at the shorter divergence time of T2@ = 3.6 seconds, as

seen in Figure 7-41. The Letter pilot hating at the low_'r gradient was due to

the reduced physical workload. At this divergence rate of 3.E. seconds a very

high level of column activity with large deflections is required to control

the airplane, and a reduction in the column gradient is beneficial. However,

this benefit at T20 = 3.6 seconds cannot be realized since the divergence

rate limit is 6.0 seconds time-to-double amplitude where no benefit due to

reduced column gradient is predicted.

In summary, the recommended criterion For landing approach (minimum-safe

operation) is the SST Pitch Diverqence Criterion. Considering the data scatter

and test accuracy, the recommended minimu,_ time-to-double pitch attitude o_ the

most unstable root is 6.0 seconds. This divernence rate is based on the

turbulence level resulting from the 2707-300PT probability study. For other

turbulence levels refer to Figure 7-3S.

7.4 STALL RECOVERY CONTROL POWER

The purpose of evaluating stall recovery control Dower was to develop a

criterion that defines the magnitude of longitudinal control Dower needed fo"

safe positive recovery from the hiqh anqle of attack, _in_mum speed condition.

This i_llnimum speed condition for conventional aircraft is normally definec by

the stall condition ideally associated with a nose down pitch reactiOr which

.........................................
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results In d stable stdll r(.covery sltuat,iun with mini:;iu,i rr.a_.tior_ r_t, luir_,rl

from the pilot. For delta wing and arrow wing configurations such u Lonventlon_ll

stall reaction is not the situation. These wing configurations do not exhibit

the characteristic stall. There is normally not a nose down moment and not a

sudden loss of lift et the minimum speed conGition. With such Cor,fi_:uFat_ors

the stall speed is a defined speed knowrt as the minimum der,_onstrated speed, o_

in more general terms, the .;peed associated with the maximum demonstrated lift

coefficient and angle of attack. One of the items that r_iqht be lir:itinq ,__t

the defined stall speed is the amount of longitudinal control power availar.le

in the nose down directi(Jn, since the l}ilot must recover the aircraft _ror_ the

defined stall speed manually. Other conditior,s which may influence the

establishment of the defined stall speed are conditions such as a loss cf

directional stability or _udden degradation in lonqitudinal stab<lity. These

conditions are not addressed in this study. The defined stall speed r,ust be

established sufficiently far away fror' the onset of stability _robler" areas.

if they exist, so the aircraft will not enter this region inadvertently b}

overshooting the defined stall speed flight condition. This then leaves t_;e

requirement for a nose down control power criterion at the defined stall s,.eec

f_r dn aircraft that has been (:liv_n sufficient marqin froL_ any undesiruble hi_,

angle o! ._tt_ck stabilitv characteristi(.s.

The defined stall sI_eed (minimum demonstrated speed) and the slJeed _sr

stall warninq (r'.finimum operating speed_ used in this study area were de_inec

durinq the National SST Program. Definition of these speeds was not part ef

this study.

Fiqure 7-,12 defines the measured stability i_; the auproach tu stall, sta_!.

and region o,' ]tall overshoot. The aircra; exhibits near neutral longitudinal

stability which is typical of the stability that would exist with ai,-planes
I

that use a defined stall speed and have suFf!cient ,,,arqin _ro_ ary denraded [

,F.,,96
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stability characteristics. /he latera] ,ixis stability was not medsured, Lut

was reported to be satisfactory, and was not an influencinq factor in ari/ c_

these tests.

The stall recovery eva]uation was conducted by varyinq the F:dqnitud'. ."

the lonqitudinal control power and havin,l the pilot fly a series c _ t2pi'a_

stall approaches terminated with m.anual stall recovery for each _vel o _

lonqitudinal control power. In addition, the atl,lospheric turbulenc,_ level was

varied in order to d_fine the effect of turbulence on this evdlu_ition, f-oT

each series the I,ilot would ,live a i_ilot r'atinq and a turbulen_._, ratin_;

where apl)licab]e.

The lonqitudin_l control power was varied by introducinq additional

increFents of tail piLchinq moment and lift into the math r,_ode! bui!d-u. _

equations. These increments were pro_]ramm, ed as a funct4on of: the co,'.trcl CC]d'"r

deflection with the increments increasina from zero at zero column der:ectio_

to maximun, at Full forward columnar, deflection. By makin(; these incre,_erts a

function of ,:ontro] column deflection, the basic airp!ane stability was

retained constant For all levels of longitudinal control uuwer.

The magnitudp of the lonqitudinal Lontrol power was calibFated by

conductin_l full nose down control inputs, unpiloted, and measurin_ the initial

peak lonqitudinal angular acceleration. These unpiloted tests w_re conducted

var.ying the maximum Tnarlnitudes of the tail lift and pitchinq _oment increments

over the necessary range to provide the desired variation of loncitudinal

anguS, at acceleration tested and the test conditions (Table 7-1V).

Due to makinq the control system modification by the technique lust

described, the pilot was re,luired to maintain near neutral trim durinq the

approach to the stall recovery condition in order to have available cot stall

recovery the same nose down control power as e×isted fur ,,_ unpiloted calibra-

This was not a problem from a uilotinc I standr,c,rt sinc_ _ar neutral



TABLE 7-IV

STALL RECOVERY CONTROL POWER TEST CONDITIOr:S

PARAMETER

VARIED

MAXIMUM NOSE DOWH

ANGULAR ACCELERATION

AVAILABLE

G = 6.4 deg/sec 2

= 5.2

= 4.]

: 3.6

= 3.0

= 2.5

= 1.9

NUMBER OF PILOTS L,_LJruA'I'A,I,,G

SMOOTH AIR TURBULEqCE

i REV SYM _'IT,_'JAV'_ _ '_ .



stability extsl._,dwith the_'-h,_s]c math ,odr, I anyway. On those tests where

neutral trim was not maintained to a s_tisfactory degree, a correction was

applied to the angular pitch acceleration parameter. This correctior cons s:ec

of applying a ratio to the angular acceleration parameter equal to the control

column available from the test trim condition divided by the control colur'r

available from the trim used during the engineering calibration runs.

The pilot task for these evaluations is presented in Fiqure 7-a3.

Figure 7-4a shows the results of these tests with fairings for the three

levels of turbulence. [n turn, the intersection of these fairings at pilot

rating 3.5 are cross-plotted in Figure 7-45 to show the trend of nose down

angular acceleration requiY::,ner cs with turbulence level at the satisfactory

pilot rating boundary.

Pilot rating 3.5 was selected as the boundary for satisfactory stall

recovery control Bower since that is the dividing line between a conEiguration

needing improvement and one not needing improvement. The stall is ar er_ercency

conditior_ caused by a piloting, operational, or mechanical Droblem., or combira-

tion thereof. , e control power for stall recovery must be satis{actory v.,tPouL

needed improvement in order to safely recover from stall under the er_err.ency

adverse conditic_n encountered. When referrinq to the pilot ratinq scale

(Fiqure 5-i) il can be sei_n that 3.5 is the limit pilot rat.ir,,-i lot {_ _ondit_ ,_

not needinq improvement.

The values of nose down an,lular acceleration in Ficure 7-4a have been

corrected For any slight out-of-trim condition at initiation of stall recovery

as described above. Also, some data points have been omitted due to t, ilot

ta_;ilia.'ization prob,e.ls, siHnificant out-of-trir, at stall recovery ir. it_atior

or e_dess_._ an,Tie of attack overshoot with corr_.snondinq oxcessive dirsDee_

undershoot. The resultin,l dafa still have some scatter, hut satisfactory 1

Jfairings have been applied which resu]t in the final cross niot in FiGure 7-4E.

"',' Iqr_
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STALL RECOVERY PILOT TASK

I . INITIATE TEST TRIMMED AT MINIMUM OPERATION SPEED

(I_5 FNOTS CAS)

. REDUCE TttRUST TO ESTABL[Stt AIRCRAFT DECELEEATIUT; PAT[

AT MINIHUM DEMONSTRAIEI) SPEEI) (118 KNOTS CRS) INITIATE

I,IAXIMUM EFFORT SIALE RECOVERY TECHNIQUE (UP TO FULL

NOSE DOWH LONGITUDINAL CONTROL)

. STALL RECOVERY TO BE CONTINUED USING THRUS-; AS _JECESSP_,k"_

TO MINIMIZE ALTITUDE LOSS UNTIL ALTITUDE STABILIZED ,'1'ID

AIRCRAFT ACCELERATING

. CONDUCT THIS TEST THREE TIIIES VARYING AIRCRAFT

DECELERATIOII R/!TE WITH ! KIIOT/SEC AS TIIE HOI!iHAL

,yl FIGURE 7-4;

'_I'O"_rJ"4W'G 1"'"REV SYM _),..
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2
The recommended Stall Recovery Control Power Criterion is O.l tad/see

at the maximum turbulence level tested during this evaluation. The satisfactory

variation of nose down angular acceleration with turbulence level is presented

in Figure 7-45.

REV SYM mo_,_,,t!._ 104
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8.0 FOLLOW-ON STUDIES

As _ result o! this sinlulation study, additional areas of in_esti_;atier:

are reco(;nized as desirable for future studies to continue development of t.he

handling qualities criteria data base. These are listed as follows:

o lligh si)eed cruise criteria evaluation using a moving base

simulator havinq qreater load factor simulation capability

o Stall recovery eontro] power evaluation considerinq variation

of basic airplane stability at stall

o Landing flare criteria evaluation

o Determine the structural modal effect on handlinq qualities criteria

o Climb, cruise and transonic speed stability criteria evaluations

For future studies in the above areas it is recommended that a neneral_zec

math model be used instead of an actual aircraft math model. This qenera!ized

math model should be detailed to the extent of incluJinq non linear character-

istics, speed d_pendent (lorivatives, and structural modes. The advantaqos _)f

such a qeneralized math model _ver the one used for this study would be the

amount of independent control over the basic parameters in the math model.

This contro] would necessarily be an important factor in the design of such a

generalized math model,

REV SYM
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f ..... 9.0 COIiCLUSI()NS

Refined handling qualities criteria have been developed in the four areas

of study. These criteria are based on previous existing criteria which in

some cases are unchanged. However, in all cases a greater understanding and

confidence level exist with all criteria recommended in this report.

The recommended criteria will be summarized under each study area for

which it applies.

| ....

9. I HIGH SPEED CRUISE MANEUVERIHG

I. Minimum pitch attitude display sensitivity reeuirement is 0.23

inches per degree (.584 centimeters per degree) for this flight

regime.

2. The SST High Speed Pitch Rate Response Criterion is satisfactory

for this fliqht _egime with the minimum overshoot requirement re-

moved as presented in Figure 9-I.

3. The optimum column force gradient for this flight reqime is aO

pounds per "g" (178 newtons per "g").

9.2

REV SY_

LANDI,qG APPROACH (_ORMAL OPERATION)

I. The SST Low Speed Pitch Rate Response Criterion with additional

specificatiens t-or time-to-peak Ditch rate and oitch dampinq is

satisfactory. The time-to-peak pitch rate resulting fron a column

step input should be between l.l and 1.8 seconds. The damping

constant (_L_) should be between .5 and 1.05. These criteria

are sum,,arized in Fiqure Q 2

2. The colul;,n Force gradient shouId be between 25 and °5 pounds t_er

"g" with the optimum being 50 pounds per "g".
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9.3 LA_IDING APPROACH (MINIMUM-SAFE OPERAT_TON)

Acceptab]e handling qualities are defined by the SST Pitch Diver'.lence

Criterion with a time-to-double pitch attitude ef 6.0 seconds or qreater foY-

the most unstable root. This divergence rate is based on the vertical tur-

bulence component of 4.0 fps (I.22 m/sec) rms which corresponds to a probability

level of exceedence of iO -3 per fliqht. This criterion is presented as a

function of turbulence in Figure 9-3.

9.4 STALL RECOVERY CONTROL POWER

For aircraft with near neutral stability up to the maximum angle of attack,

2
a mininlur: nose-down angular acceleration capability of 0.1 radians per sec

should exist. This is valid for a vertical turbulence component of c,r:, to 7.0

fps (2.13 m/sec) rms. This turbulence level corresponds to a [,robability level

of exceedence of 10 -_ per flight. This criterion is presented as a function of

turbulence in Fiqure 9-4.

9.5 PILOT DESCRIBING FUHCTI(IN STUDY

I rilot frequency response characteristics display pronounced

high-order lag (4th order or greater) and lead or lead-la,:

equalization which is usually second-order and is confic_uration-

dependent.

2 The la<' characteristics are essentially constant aronq the _,i,ots

and conti<lurations tested and are assJmed to represent human

neuromuscular phenomena.

3) Conparison with other published data sugqests that the neuromusc,,la,"

laqs are dependent on controller type.

4) Nonlinear, "ban_;-bang" control activity _redominates at and L_,vord

the neuro._uscular break frequency.
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s)

6)

7)

Tracking performance, control activity, configuration character-

istics, and pilot preferences are the principal variables affecting

pilot rating.

Good agreement was obtained with observed data using a _.inear

regression modei to predict pilot rating, but the present data base

is too small to give sufficient statistical confidence levels.

Only small differences were observed between pilot frequency

response on moving and fixed base simulaLors.
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SYMBOLSAIIDABBREVIATIONS

ADI

ALT

A/P

c

CAS

cg

CL

Clll

CW

CR

deg

dB

EADI

F
col

fpm

fps

ft

g

GW

h

hREF

HW

hz

L

in

kg

REV SYM

attitude director indicator

altitude (feet, meters)

ai rpl ane

output of nonlinear element

calibrated airspeed (knots, m/sec)

center of Hravity (_' CR)

lift coefficient

ten ti mete rs

cross wind

root chord

degree

decibel

electronic attitude director-indicator

col umn force (I b, N)

feet per minute

feet per second

feet

gravity (ft/sec 2, m/sec 2)

gross weiqht (pounds, kilograms)

altitude (ft, m)

re{erence altitude (ft, m)

head wind (knots)

Hertz (cycles)

system input

inches

kiloqram

I

I PL:,E



_-' kts

L

Ib

L
u

L
v

I

L W

m

max

NASA

q

N (j _,)

nL

N

n z

nZss

PR

PT

tad

rillS

Rx× (7

Rxy ( T

sec

SST

T

t

T L

REV SYM

knots

normalized lift per angle of attack (sec -I)

pounds

longitudinal integral scale length (ft, m)

lateral integral scale length (ft, m)

vertical integral scale length (ft, m)

system output

Hlax i mum

National Aeronautics and Space Administration

normalized load factor per angle of attack (g's/rad)

linear pilot representation

limit load factor (g's)

newton

normal load factor

steady state normal load factor

pilot rating

prototype

radlan

root mean square

correlation function

auto-correlation function

cross-correlation function

seconds (time)

Supersonic transport

time (seconds _

time increment (seconds)

lead time (seconds)



q

T20

T-
%ax

V
C

m

VREF

V20

x (t)

x* (t)

y (t)

v

P

_o

S
col

E

@

@C

@A/P

6
4

@max

@SS

f

u

V

time-to-double pitch attitud(: seconds)

time-to-maximum pitch rate (seconds)

wind velocity vector (knots)

calibrated airspeed (knots)

reference wind velocity vector (knots)

wind velocity vector at 20 feet altitude (knots)

independent variable

complex con,iuqate of x (t)

i ndel)endent variable

pilot describinH function

terrain roughness factor (ft, m)

angle of attack (deg)

column deflection, rms (in, cm)

colunln deflection (in, cm)

closed loop error signal (in, cm)

trackinq error (rms) (in, cm)

dampinq ratio

l_it(:h attitude (deg)

I;itch attitude command (deq)

pitch attitude error (deg)

airplane pitch attitude (deg)

pitch rate (de_I/sec)

maximum Ditch rate (de(I/sec)

steady state pitch rate (deg/sec)

coherence function

longitudinal turbulence cor_ponent, rms (fps, m/sec)

lateral turbulence component, rms (frJs, m/see)
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I I .... I "

w

T

_Xy (j _)

L_

n

vertical turbulence component, rms (fps, m/sec)

pilot's time delay (seconds)

power-spectral density of x (t)

cross-spectral density of x (t) and y (t)

frequency (rad/sec)

natural frequency (rad/sec)
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Simulation Facility Description

The study was conducted using the Flight Simulator for Advanced P.ircra_t

(FSAA) at NASA Ames Research Center. This simulator has six degrees o' 'rtior

freedom, and is described in References A-] and A-2 (only' five degrees of r'otion

freedom were operable for the study reported in Reference A-I). Details o_ the ,

simulator pertinent to this study are summarized below.

Coc_it- The interior of the three-man FSAA cab was representative of a transpor_

I

i

aircraft flighL deck equipped for flight test. The panel instruments and

controller mechani(.al design and location were representative of SST cateqory I

airplanes. The lateral controller was d conventional control wheel, and was

rpowered by a hydraulic cont o, ]oader, as were column and rudder controllers.

The mechanical characteristics of the flight controls are presented in Table A-I..

The _)ane] instruments provided appropriate sensitivities for an .airL)lane i
i

o _ this category and can he seen in Figure 4-] and 4-2. T_e two sel)arate

Fi_lures are vsed to show the two types of attitude displays used in this stud_.

Figure 4-[ shows the mechanical attitude director indicator (ADI) which was dsed

during the first simulator study period, and Fiqure 4-2 shows the electronic

att_tude ,]irect_,_ ir, dicat_ir ([A[)[) used durinq the second study period. The ADI,

_'_del H/-_[, had ,t pitch scale sensitivity of appro_matelv i._; m::'/deq

(.07 in/de,l) a_ _he nominal bitch attitude being flowr,. The EADI had a pitch

attitude sensitivity normally at 4.1 r,_/den {.16 in/deg), but was increased up

to 7.6 T_r,/deq (.30 in/deg) for this study during the high speed evaluation.

• he airspeed indicator had a scale of ]00 knots _,e, r_._r'1,.;tion ol r t!,e diai

race. Annunciator iights below the glare shield indicated individual ":ain amd

nose ,lear touchdown. [mmediately to the right of the AD[ in Fiqure 4-I car be

REV SYM
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seen the actual and potential flight path angle display.

this information is displayed on the screen (Figure 4-3), Therefore, to provide

additional room required by the EADI the separate flight path angle display

along with the trim tab position indicator, were eliminated.

The isle stand and throttle configuration is the one seen in Figure 4-2.

The configuration in Figure 4-I was not used during this study. Also, in

Figure 4-2, the workload lights can be seen. Three of these lights exist. One

is on the left window sill left of the glare shield, another on the glare shield

directly over the EADI, and the other is immediately aft of throttle levers

three and four.

Motion system - The six-degrees-of-freedom motion system of the FSAA is distin- i

I
guished by its extensive lateral travel of + nO feet. The motion axis of

- I

, f Iprimary interest for these tests, however was the vertical, which had + 4.0 eet

of usable travel. This provided a capability for effectively simulating motion

resulting from a turbulent flight cnvironment and the initial onset of maneuver-

ing accelerations, but does not permit large motions which would result from

sustained normal accelerations.

The D.C. drive signals to the servo motors were higF-pass filtered to

constrain motion within the allowa61e _imits for each axis. Discussions of thesel

filters and the effectiveness of FSAA motions on the piloted task are contained

in Reference A-] and in Appendix A of Referem.e A-2. Specifications for the

motion system are summarized in Table A-J1.

Briefly summarized, the FSAA motion logic was configured as follows:

fourth order high-pass "wash-out" filters were generally applied to the drive

s_gnals. The damping ratios, break frequencies and filter format used to

drive each degree of freedom are presented as follows:

REV SYM
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KS 3

($2+2_S+ 2)

(Fourth onder high-pass "wash-out"

filters applied to pilot station
accelerations)

x y z P Q

,_ = l .4 l .d l .4 1.4 I .4

o_m = .4 .15 .4 .2 .15

K = .5 l.O .75 .5 l.O

rlote-

R (dearee of
freedon

1.4

.15

l.O

The S in the numerator is only third order because of the

necessity to integrate acceleration to a rate siqnal to dYive

the simulator.

The roll-lateral and the pitch-longitudinal modes used the residual-tilt

technique of washing-in cab anqular attitude to provide a steady-state coI_ponent

of linear acceleration. These sustained linear accelerations were provided at

full sca]e for lateral, and one-half scale for longitudinal. The residual tilt

time constants are as follows:

lateral acceleratio _ - _-Y
.25

longitudinal acceleration
O-X

l.O

Visual__sj(s_t_e._ - The pilot and copilot were each provided a 21 inch {diaqonal

u_easure) color television monitor mounted in the windshield with a viewinq f_elG

of ]po vertically and 460 horizontally, with unity maqnification. The pilot's

monitor had a collimutinq lens to place the i_;zaqe at an infinite distamce.

The 14ndinq scenp was the rlosed-clrcuit TV imaqe of a model airr)ort _.:th

Sur,'oundln." terrain, as viewed by the com;_uter-cor4f_anded servo-drive_ _V ,_"e,'a.

I tlod_l scale was 1"600 and I_rovided a runway RO00 Ft. lonq and 15Q ft. wide.
Specifications for the visuai display are presented in Tahl_- ._.-I]i.
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I

Sound system - A sound generator simulated jet engine noise which was proportion- i

al to thrust, and aerodynamic noise which was proportional to aircraft s_eed.

These sounds were introduced by speakers on each side of the cabin. In

addition to adding realism, a primary benefit of this sound environment was to

mask tile noise of the simulator motion drive systems.
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I'-PPEND IX t_

PII..OT r,lR]lt t.lOIJt L

Introdu(:t ion

The purpose of this dppendix is to present det.ailn of tier, ,_ilot ",ndr_]_,,{]

technique used to aid in landinq approach (normal operation) handlin< <,mlitieq

evaluation. Pilot dynamic characteristics were evaluated usin(: the "es<ril:,inr;

function technique in an attempt to ,lain ,luantative Suhstantidt:r.,' _'_ .F,,.

pilot ratintls ,liver.. Results of thi< anal,/_is urovid_d _ ,'_eans Lv ;,,!,r ;.<Is'

ratings could be corr_'late,l ,nd applicable avera,le ratin,_:-, estir,ate.: _here

considerat,]e pilot rat. in,l <,ratter _xisted.

Discussion

,\ quasi-l_nearization technique was ,i_ed to model thr, r.ilot in the

frequency domain by the combination of ,_i describing function, whiLh reures{,nted

the linear eleT_lents, and a remnant, which represents the nilot response not

lineari]v correlated with the input. The describing function used v,as the

randof input de_(:ribinq fum, tion with white noise f:rovidin" th_ input siqna].

Calculation of tile rando,': input describinq function is base.1 qr the cross-

aml L.owet-spectr,1} density functions, m b,/ cornputationnl tethni_],J_% using

the cross-corrPlat, ion and auto-correlatior_ functions. The theoretical barl_-

,lround, exp<,rimental procedure, and the ,,nalysis and tvntheqis techni(]ues will

be prese,ted i, Lhis discussion.

Theoretical bacP(iround- The startin,i point for desc_ih_ne functio_

am_l,,'_i_ (based on spectral ,_nalysis) i"-, the correlation functlor. ? (C) o"

which theft aru two kinds the ,mto-corrr'lltior, functi,m r. ('t.) a_r! _h_.

crfm_-cnrrelafi_m function f_ (_') which ar_, defined, reslm<'iv_.tv as
xy
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where x {!. ' end v (t) ,IFC independent varinbles, ×* (t) _q tL_. co_,t;!e.,

coniugate ,)f., (t). and i s a time increment, l'he purF, oS_, ;Jr the-,w r.,_ *_ ._,,

is to estaLi ',._ th,, linear correlation between two ti_e hister!es: ie the c_',P

of auto-correlation, between Lhe .,iqnal x (t) an, l itsel¢ _hi'terl _n 'i_e,

and in the case of aut(_-Lorr_latinn, between the _iqnal × (t) ,;rid the siqrel

V (t). shifte,l in time. This is i11ustraLed in the FollrJwiH,-'-hatch

t

E -

_C

',ore th._' when "C _I I' ('C) it. _,ir,I)IJ the nlea,_ s_luar, averaqe valur- _._
> X

.... XX

have no relationship t_) r:,_ch ()thor. Sir_ilarly, if !. (_) i_, zero. t h_ twr

sl,]nalq _ (_) and v (t) h_,v,, nn linear" ,ependenc_, _)n n,lch _.ther. Th_ _c _.

' f

neanq of deterI:'.iniil_: f.he linedrit,, oi ,, control ','/st_' _ler:ent.

The _.oncel)t of linear Lorr(_lat. i()n is carried fr_, the_ dr, ra _ tr _,_

,_ore useful domain (trequ_,ncy} bv the Fourier t.ransfort,, if _ renr_+_

the Fourier transFort,' (_f P.

-_:_

REV SY_

_,_/AI_ J ,.,o,.,,__ 127



Now,_ xx (j_) is defined t(i be the l_nwerspectral der,siLy of ×

(j_) is defined to be tile cross-spectral density nf x (t) a,3d.×Y
_o {_ is an ever' function of'C so

XX \_"

t and

t

and has zero phase anqle.

The power- and cross-spectral densities r:_ay also be ex!_res_ed in ter"_s of

the Fourier transforms of the functions × (t) and v (t). If X (j_) and Y

(i_) are these transforms, then

r ,,,-- ,

The functions of time of the contr_] loop, Fiqure D-I, ,:_a,/ be Fnurier-

transformed and the cor'Lrnl laws derived in Lermq of these trans{orr"s. ',_e

have. referrlnq Lo Fi_lure 1_--]:

\ _ C_) _ C_)

For,ling the mroducts [ (i_) *L (i_) and [ (.i_) *C (i _) an_ notir, n that

I (i_a) *R (.i _a) = O. we can. by equation (3) write

REV SYM
,_',O'A'/,4_'_ I ,_o-

I"_ 1 28
->-



t

_

I

....... I

i
I i
j i --_

i '

J

CHIc_ ....

APl _ t

I i

L.CX_ C.O_LT_::::_Ok_ SY..,V T_.b,,/X

BOE'J,4Va_"



from which it r'iVL.CLIF fc.11OWq thnt the it_.: .... _ _r'ter,,,,_ , _,

S_nce, in thi _., experiment, _.c = o_'_. c ¢S

p_lot. Y[,. we _fve

, ,. q f_ '"_'tOflt_5 t_IP

•_ the needed bilot describlnq function

lirvfrl¢ ,rrrpnlm! to the inl,u_. ]. the dPsi.mat,_.d _o_rence _Jr.qtlnn,

N)tinq thnt

we n_._8 i n

wb i _, I S r__

p 'l
"rh, .'n _e o _ ' _'-,elf _' ,-',_, ,

_ I'.f,_r, to NOw '_r St,:, 'r, m,: :_'

r_n,'_"or_t 8 n,_nlim_,_, ,ontro1 ',,''_. , '_,,mnt. "r,, "hi .t-,,,1 • "1 ._, I ','

_jr_1'¢sis Of ,,,;,_,r,.,.,._ ,_.Iv-r_eas_,-,.d ,,_,nal time h;%tO''_".. FOr : ",_. i*.ta:'r '_
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discussion of describinH fun_:t i,_n analysis the reader is referred to Peferer, ce

B-].

A descril)Lion of the present svstem_ lrom the point r_f view r,{ contr_]

• 4"system theory, iq as shown in Fiqure B-? In this stu,lv the variabl_. FI_

the system lor_.inq function, ,ind iL is _._;mprised of two _,iHr;al',: f_ILet-ed white

noise from an external source, which provided the randohl inout si,!na], :_.nd o

signal proportional to the airplane's deviation from a reference p_tch attitude,

which provided the pilot task. These signals, combined, controllea the ]is-

placement of the pitch commaqd bar from neutral in a stcJndard fliqht 'jirector

indicator, Fi!lure B-3. Thiq was the total vi_ual cue to the pilot. The second

signal enters through the fli_,ht director command bar e_u_ations, which are so

designed LhaL the command bar is centered if the pilot is either on the "!"de-

SlODe or flyinr_, toward it, and was retained for !ourposes er realist. The

pilot's task was to move the column so as to eliminate the bar disDlacer_e_t.

as in an actual approach: if the bar is hiqh, he pulln the <.olumn bacU.

Physically, this represents ._ ca_,e in which, rlvi_.q below the qlideslo".._.

beacon, he put1" back to climb and reqain the qlideslone. The key ne_nt _t-q'"

the standpoint __f control s'rstep, theory is that the pilot r"c_ves one err'roller

(the col,i__n) in reqpon_;e t._ _n_! /iqual c_,p (the c_)_',,'_and h_r r'ffset) and *h_, _

create'; ,: qinq1_, IooI,, cump{'ns,'f_r'V trac_in- system. Tho al. iectiv_ i,. '(.

deLerv:_ine the _,ilot'_ cc_lumr_ dpfl<_ction fr"rTuoncv ;IJ'" trur' ._'. ho :_+te"_b+s tr

keep Lhe bar centered.

Durin,: ._ pilot model r,ea'.llrement run the, ,_ircraft i_ held _tt ,i r,_ed

altitude iv_ order to maintain fixed fli,lht directr_r qaie _ an ,_ t'_, all,,v. Lf.c.

run tii_e _, t(_ b_, .is It_n,l _,, d_,qirr,,l.

[xj_orimenLal Procedure: lhe l)ilot wa', inqt.rucLe'. '. :,ur,_, ,f,r. _,,_ :z,rLa_

flignt director bar, the posit, i(_, oF which was controllad e._ s_qnals nro:_oc-

Lional to the airplane's pitch attitude and cllideslal)e _rro_. In this st._ilv,
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a random signal with a second-order filter at i rad/sec was used instead of ,,

true qlideslope error, to drive the svsten_, r, lideslope error is converted tra

hitch comma.r,:i error signal by the fliaht director, which is to be rer_ove,_i by the

pilot by "fl.virq to" the bar. The pilot thus essentially closes a nitcl_

attitude control Inop. Fi,_ur{, 11-4 shows the measured spectral content of the

qlideslope error and l-li,iht director conlman,i siqnal, lo ensure r'a×imum pilot

attention and activity ,_ larqe command bar deflection of aboJ_ __ ! inc_ (2.5a c_i

wa< employed. Thi', i_ laruer than would be seen in f]iqhI:, but ,.._as use{] because

of the extremely s_:_all (:OIUT'_ ,leflections observed in the usual arJF_roaQh flTi_<.

The pil(_t<., weYe offared practice runs ea, h tir_e the aircreCt's character-

istics were chanc]ed, but after initial familiarization with the system us._allv

declined and performed for data.

Digita] signals Qenerated by the Xerox Sigma - L comnuter of the FSAA

facility are customarily chanqed to analoq voltages bv diqital-to-analoo conver-

ters (D/_E's), far disl)l,_v on multil)lexe{i strip chart recorders. The variables

needed for the r_ilrt de_cribinq f_mction analysis were recorded direct!/ froT:,

_he OAC's. the I()0 volt DfC nut.lull w._s t"_duced to ].414 'Jolts {mea_ t<_ TJea_)

t:v an am[._lifiet', and inou_ to an Ft.i tal)( recorder. The recorder hoo_tJ r, is

i,_dicated b'; Lhe schematic 4r, I-_<lur', B-5. Scalinr_ frir adeo_ate sir_na ], stren,_th

wa<. ,icrl)_._lishe, l within tLhe corn!turf,r, bef,,re output t_) the DAC. The l i_itin_

of the _,npuI: w_lt,lqe to 1.414 vnlts ,_aximum peak-pea_ {I volt r,'s} was recom-

_ended for l'll_lJll_Hlq tape rec. r,r_l_,r d i<_t.(-.,rLion.

Tape inl_t <,i(Inals were, _:_onltn__,d with an ()scillnscol)e durin<' record_n, t r

verif\, thc i_r(,_(_[lCe o. _ dat,l _i, lh_, (.,lp{. _ , <iFld t{_ a',certain proper <i (. {_ _ {I ]]ri'(

<:,l,]_] . .,_l,! ,_1,-.,_ l,e ,,i.,nl I__> . Iril, (.hart r_ _r,l_,rh fn_ ' irnu!t,_n_,,' _',u<_7

i'onlf,,, {,_., _;f :ill ,.h,!nnn!.,. Pi,-l_-_, f_-6 ..h_,, _,_l,i(<t) +i..,, v-i_t,,rv tr_tces ;" Lne
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,v(.rc, <;or, pt, ted t,', l)(,v'er .,_ettral analysis Fr_,r '__. , _ ,. ""_.,-

,, _ _(_l'umr _,tlr._tioT_ and e_rp_i.'( _tck" l'I._.

cortland _C t_rni_,l _rom C)( -_.n_l ,*!_e .irplan_, pitch attit,,!,. "_: .... ( _:- --_,/p .

Tre .:,lot ,'.escribin,: FunLtin_, i'._ the ratio ,;F the two err,=,' %'.:e_',_] ,...r .... (_.
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and low-damped configurations. Both pilots in this study are Boein,l _n,.tr'nctor

pilots experienced with large a_rcrafL' pil_t /I. howew_r, h,_ _m_qid_r,t-!_

more e×perience with simulator flying. Figures B-11 and B-I_ are _ixed_based

simulations.

In qeneral, the data all show essentially flat maqnitudr, curven t.o about I

rad/sec, then an upward break followe, l hv n sharp downward hr(_nk at about 5

rad/sec, ,_c(;ompanied by increased data scatter. Phase anql{, curve_; ,_re fl,_t at

small ,_n,_les. (uJt Lo 4h_uL b rad,/se_, where i_ ]arrle amount ,_r q(.aLter bering.

Some curves, such as irl Fi_jures B-8and B-14 show evidence .qf add iLiona] eauali-

zation prior to the I rad/sec break.

Some indication o ¢ the siflnificance of the scatter !q obteined Cror Lhr-

trend of the coherence ¢unction,jg, ploLted on each figure, fg discussed

previously, a value ofjo : l.fl indicates the system is completely linear" n

= i 4
valuej_ 0 means the s,/stem outpLIt has no linear correlation with the npu...

In the .l_ta ol Figs. B-7 throuflh B 14 tl,ft value ofjo is ,,_nerallv in the are_

of 0._5-.].0{] a_ low freq_enr'ieq, which in,licate_ alrnosf r,(_rfert linearitv, bull

decrea._es to nearly zer_ nl. hi'lh_r frequencies. This indi{.at.e _, that above

approximately {, t',_d/se(:, pilot resl)onse aSsulnes ,_ nonlinear- _or__. _nd the

linear representation of the data in magnitude and nhase c,4rveq ]ose _

signi licorice.

This nonlinear_tv is in aqreew,_ent with observed pilot behavior. Pilot

column moveu,ent tende,_ tc_ he of nJu_ll arJplitude, r,_rr, lv _ceedin(, _- ] inch

even _rl(l_Tt _ lqnr()¢I,, pur_,ui_ t.aqks, an,l impulse-like,. _,_" 'hanq-ban,_" as a

relativel,, _ ixe,.l.aml,litude ,leflecti_n v;4,, imposed ;it v.,r'/in,, ir_t._.rv,_s nf ti_e.

The conln4st, bet_leen command hat dr, flect_on and col_mn motion i'. shr,wr ir trnr. es

,' and ] of I _,lur_. B-6, t,_._en ir_m' !hn I.rpqent ,]ata.

it i,_ _.nnv_,ni(tnL f(,r I_urpnse'. nf discussion, anl nq*._nti4', for ,,,urnnqes of

pilot mo, lel _,ynlhe_i',, l(, de',cribe the pilel i'requenrv response curves <n terr,q

RE V SYI_ _r_i'lA_dl_ _0.

1_17



of lea(I ,lrld laq dynauli__<_ _,1 var_fm', _r_l_,r',. [{osic hounda_'y ,.ondition. _, _m the

pilot model are _elf-evidenL, and the work of previous investiqators _rc, vides

guidance on .letails. For boundary condition,_ we have: (a) pilot response r'ust

be finite at very low fre_!uencies, and (b) the response must approach zero at

very hi'lh frequencies. A sin,_le lead term, commonly used as a pilot '_,odel. is

therefore an incomplete model because it fails to show how pilot res_)onse

decreases with increasinq frequency. Laq, therefore, must be r)resent.

In a w_rv detai]ed pilot model 4ev_lop_4 in ,Ref. B-3, _he limitinq human

neuro-muscular la_l characl:eristics are ,_ssur_;erl to be third r_rder, of t.he form.

i

L-o_4

Since all the data show evidence nr a hiqh-order laq at about 5 tad/see,

the :,ilot ',_ode] %r this ._tu4,/ was assu_el to be of the for_

,) ,

Use (,r t.hi', r;odel r_,qui_,,q acceptan(:_, nf the f,_(:t that it dees indeed

(les, rib(-, the' dat_,,, while' l{,,_vln,l _inanswero, I t.h(' q_e',Linn of the physical si-

nifty_ant(_, ,11 !he .o-, _11_.4 "nQur(),n_',r..ui,_r ,l_u:_l,inq r._tio",_ or what. in fact,

sets the ,_eu_o,,u'-,cuiar bF("a_ F_('qu_'ncy.t._ n. It. is not kno_n if bilot

!_hysiolo(/y alone Ts the contr_llir,,:' factor. ()r whether it is situatir_n (i.e..

task) dependent _._ influenced t_', such v_.riabl_s as [_ilot body _t_t,_de and

_estr.;ir;t. Sor"c' ,lata _.;_11 t'e nresente,l l_fer to show indications ,_ _h_ effect

._t [bt'S( _ varlah],.'

.h,- t,_rl, u; the. 'b,.,,' ,_,tel _,-,," Y; (le) wa. _41,1,_t_d as r_(;iJJr_,:l t.6 .;iv(. _

a ,laqnitLide curw thai. ,iqreed with the :',4,,_.itu,t_, data _{ earh r)f Fiqs. '3-7

t.hroljqh P,- 14.
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int, rolu(_,_i, lll,,tt, ,I (tl I.h(, ',lr,pl(, Ir,._! 1I ',h()wn in the ('x!,r(,','. _)r_. The. ,J lr,t'-

because it could not be determined _'iLh arty accuracy fret the ;,hase _]-..-.

Additional lead and lag is viewed as equalization generate,1 bv the I,ilo_ t"

obtain adequate performance from the airplane, and it is this that we ho_)r to

eventuall, relate to pilot ratinr I.

The _ilot ,rodels deduced in thi_ way from the data o r Fi_;_,. 3-7 th,eu,!_

i}-14 are presented in -table B-l, and are alerted nn top or the data to show

the matche,, achieved. .&l<;o <hewn in Table _-] are the pilot rat. in-% ';iron to

the confi(lutation of each cd',e on a representative iandinq a',_pro, ach task

pro(:eedin(_ t(. touchdown. The <,implest r_odel that qave a rea',nnaL.le tit wae

selected in each case. The fol]owinq five !,oints may be ,_ad_ reqarr!inr: t_.

I
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this difficulty. The qeneral form o# the pilot model is thus'

"_--_'__ 2_ _t_-_,._ __\-_

.is derived [,v co_:,pari_,on tu the data. v:ith frem_encie ¢, and ti_,'e L,'msta_t _

a,liusted to _,_atch each data set.

_n,, o_: the _rincipal use_ of a I' 1_t model is the prod_ction of '.ilot

,'ati,_.S bv ,;<in,: ;:_odel barameter_, such a- -.qualizat;oq tir,e (_onstants. Ir,

this iqvestiqation an attempt was Tqade tr, relate the characterlstics o _ the

pilot .models (Ji_.'u_sed aE_ove 'o the pilot ratinqs that wer¢, ,,iven th_ variou_

airplane confiqurations hv i, il(_th flvin,: ,, ]nndinq approach t,/}<,_ _ir:ulatlon

that included _11i,le',lol,_,, ,_pture, rlan_,uw,rin,l ,_houl the ,llideslooe. and tnuch-

_Jown _it. ,_ ,h,,.ir,.,_l !,()Inl on the' lunwav.

it ha% been pointed _,Jt In ',_,vrral r_f_:r_,rme'. (_.,].. "eft,. i]-7 thro'._qk

B-9) _hat ;_i]ot euua]iz,_tion i_nrameter _, nlnne are ins(,ffi_ ient tr_ [,redict r_lot

ratin,Is, and I'IUS[ be combined with measuY{,q o£ [)erformance ,-n- wnr_ lr._d. This

fact w,ls home _ut hv the lata of the present experiment,

In F],!uf_, _}-I£ _'_ _,hm.m _ blot nf [,_1ot rat. inq vs. the ti,"_, _,'n_,tanf m#

the !)r_n_ 1,_,_1. ',et(ln,l.,_,t*_r l,"nd ern_,_l_Zat._r_r_ _" _t tlq_' m_d_l', ;r" T,:t:lr'..r,._[, for

The Limp _,_nstant fnY ,_ _ecnndinr,Jer ',v_,f.er, ", with t.h_ (.hnt _,._-rlst._fi e';uat'on

REV SY_
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I

each confiquratior, tesLec!. Noted as r_arar_eters on Fiq. _-15are a relativ_

measure oi tr,lckinq accur,_ 7, #,, , define_ as rent :r,ean squat,, pitch co_qna,-"

bar" displace@ent, O ¢ , divided by rr,is qlideslope cemTnand (recall, filt_-r¢ _,
Y'HIS

white noise)_ _: , and ,I relative T_easure of workload,_ , defined as the rms

column deflection. Both ,_w,raqes are taken over the ]er_',th ,;_ the data s,ri..l_ _,

and were ta_:en durin,l the fixe( altitude describinq fun(,tioy_ runs, not the

approach runs. The relationships ,]mnn,l the parameters c,_ ri,:. '_-16 an_ thr.

confi,:',ur._ti'jn:; tr,:Ste, ,_'r_ c] _rif_od bz Table i_-II.

F_q,_r,, ?-15 clearly _,hov.. that ther_ i _, no _!irect l i,,e::r r(.latio_ m_t_.,,,r,,

'i_::t ,'-.'*',': ._,_.', ,:.(:ualiza_ic;r. t,_:_e ,_(.nqta_t. It also shnv..; _h,:_t two .:i_r,._'

, _ V' "ff)_ '!)llrlql,i,)t ',n _:nrim_,Iv ,_i_prr._)t] ,

P:]. , ' v,_',._ th+. _,,+,,_!,n_. ,r_+lq,_r._t+_,n. o,._., .... Th¢+ ,,'}m+;_'.,_at _,,, ,,._+_

,.._._: ,_,_._i_' t,,_, :,, .: , ,n,_,r_, _b,_' :._,ntr,,llnt._lit... Tl_e Con'_i'_lr',:t_on " '.'i _' ],v.'

dampi_q - ' slm., . .... res_mct_v,.l,. .,.t,..n,, bitch r,_t,, r_,{{Llon_e v,'er_' rat_d r.0 and _, _ , t

_o',.. :,er{,_r,,,_rtce deqr,_,te, i. it l;,po._r, "n 'fete tw(, rlse! *.h_* t_r rat_r'_ .,.(r_,

' , ', * , , . 3_- ; ff_*h.'_ <

or'. _ combinati_',' (_ bdfh.

_t)_"_*IY'TI!,#I"i t' ,}_}! ,..,,_f'!, ]r),l,] t,ofwe(,'_ f_'_.',_. _v,,_ %.:pf_,lNrI_'L'ir_r_ ..,r.r( ' _ II] _ " q ,d_' ] ,'

£()rlS_''t_':t' . _ I'f _.'" th rt%'',}]'' ; .... '_'' _'"IH t] _.'' *' _' I; _'',. }'_ llt ir r, ' _ ._'_ ',r,_--,'2f_r,,

t'_::i I] _.' !t lP_i Itl/ 1] _h, ; (tr ,t'''1_% ,' ' 'h,. 1')_.,-'I,t'::,/' _ , ',_ t } l,r 't ';-q _-r:,,tl ]_ ''

" ' _ ' I' .... I] l')t t }t ;N '' ' I' } " " ' ' ' " ' 1OV" £rotltjen([, ,. ,,1 ](,f ,;,jl_" F :Lit(,. '_:- [6,

r_
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, I

Run

DF-17

TABLE B-II PILOT PARAMETERS AND RATINGS

Configuration Pilot

Baseline A

t

-19 _ _--_, = ._a:,

Lead Equalization
Time Constant, sec

1.33

-20 _o_ 2.0 5c_

-24 Baseline

-25 _ _.._ = ._L_

1.56

.4O

.66

1.11

I .91

col
rms

C
m_s Pi lot

c
rms Rati n(__

.43 3.66 3.5

.35 2.9a 6.5

.3a a.12 5._

.67 a.50 2.0

mo ,, c I" 15_



An attempt wasmadeto _mrrelate pilot ratinq to the variables TL,(. ,

andS. [igure I_- 17prosont_, the r'e_,ults of a multiple linear r'qregsion an,J 1./,,i s

on the six data IJoints of Figure B-15; the best functional melationshi[J obtained

among the variables or their reciprocals is"

As seen in Fig. B-17, this expression fits the data of P_lot A very well,

while the dat_ of Pilot C are not well predicted. It appears that PLIot C'S

data are suspect, but at the same time it should b# noted that with c,r_l'/ 6 data

points the functional is only statistically valid to approximately the 90

level, or below. Hore rlat,J are needed, but in view of Fiq. B- 15. the correlation

obtained is pr(milsinq.

Given a means of select, ins TL, one way beinc the establishin_ of first

order dynamic characteristics near the pilot.-airpl_ne open-lonF, crossoveY

frequency, as discussed in Ref. B-3, prediction of the pilot rating fro(, at,

airplane :'_odel would follow from excitation of the closed-loop compensator:

s vste_ by a Yandor_ input, and measurement of the variabl_s_and__t.hat resulted,

followed by the use of a pilot ratinq functional, such as Eq. (5).

Once this technique is explored and verified to a sufficient statistical

confidence lewl. it ,'av ptove useful in choosinq between candidate aircraft

control ,,ystel_l (tPsi(]n _, and allow a ldrrle nut,bet o r syster'q and failure modes

to be screened before piloted simulator anal/sis is unlertaken.

Conclusions

Based on this study, the tnllr_wln,; i,rjints can he Tad(,

1) Pilot frequency r_mponse characteristir, s displa,/ rrr,rouncec hiqh-

order lag (Zlth _r, ler nr qreater) and lea,l _r lead-la,l _flua] izatior,

which is usually second-order and is con_iquration-dependent.
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REV SYM

The lag characteristics dre e',sentia_l, c,, ,',,' _"_,,_:: 'h, : _] ,,_

and configurations tt,,)te,J {_nd are asguPr, d t, ,-,,,_o.,r,,_ _,:_,'a_,

neuromuscular phenoPen,.

Comparison with other published data ,._-,,_t.,,t _ +,,,_ th,: ,,._r,.,,u._,,jl,:,

]ags are dependent on -cmtr;:I1er tTpe

Nonlinear, "banrj-ban_;" L_ntr_)! _i{t1.:" , _-_; ,,' 1,:<t-' _,t :, d ',)b/O!l,.

the neuromuscular l,rea_ '-reqJen, ,.

and pi]ot prefer_mce,, are tL. :,_ 7r ,. ,l . ,r ' _! '.., _;',. ' :,

rat 'n o .

Goo,I a_}reement was obt,_ned wiLh r.I,'_,.,, ,.! !at_ Js_,, ' !_n_,-_r r_. ',-_,_

sio_ n_odel to Ipr(,,Jl, +.: '',ot r_t_n,_,, ,_' :h- '.r,,c,:.n* ,1,' : I.,_',_. ':'O

smell] to _,ive Stl'Ft:i( _o'_t '.tat,'.__,_ , .'i._.r , 1,.v,.',.

Onl/ SIliall differen,.:_', w_:_e _,bser_,. :,.'_e,.: ,.-I t ',.,_u,-,,,. ,,,_;r,_,,,,.

on moving and fixed h,_s_ ._'.nl,:t_ r<.
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APPENDIX C

WIND AND TURBULErICE MODEL

The wind and turbulence model was the same as that used for all evaluations

of the YC-14 at the same simulation facility as used for this study. The model

is based on work done under contract for the Federal Aviation Administration

by The Boeing Company (Reference 7). This work was specifically aimed at

developin(l wind models for simulation studies.

Basic parameters that define the wind model used for this simulation

study are presented in Fiqures C-] through C-4.
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APPEND}X D

PILOT EXPERIEHCE

Pilot "A" is a pilot for The Boeing Company. He received his fli_'ht traini_.:

while in the U. S. Navy anG was in the _lavy for three years. !le has been w_-_

The Boeing Company for 25 years, working as a flight test engineer for thc

first five years and as a pilot for the remainder. He was the B-g2 Project

Pilot for all phases of the flight test program and has been a test pilot for

various types of testing on various Boeing airplanes (707, 727, 737, and 7_71.

His 8500 hours flight time have been almost entirely in large subsonic aircraft.

Also, several thousand hours of simulator" experience, includinq both ,':ovin_ and

fixed base simulators, have been obtained. Presently he is Senior [n_lineerinc

Test Pilot and Senior Instruction Pilot for The Boeing Company, as well as

a NASA consultant on the Shuttle-0rbiter Program.

Pilot "B" is a NASA research pilot and a qraduate of the USAF Test Pilot School,

with 16 years experience as an Air Force test pilot and 8 years with '_AS# as

an aerospace research pilot. His fliqht exDerience of 12,200 hours includes

over 2500 hours in heavy, multi-engine jet aircraft (B-52, B-_7, B-5_, XB-TS,

C990), 6_0 hours in medium multi-enqine jet aircraft (B-57, YF-12), and 75_

hours in sinqle-enqine jet fighters (i,_imarily the F-IO4). He has _iowr severai

flights in the Concorde. lie has about BOO hours of simulato_ exmerie_ce

(including VT@L, STOL, Concorde, B-2707, AMST programs). _e is preser_tly I_rc!ect

pilot for tile YF-12 and heavily involved in planning and si,"ulation studies c _

the B-_47 Shuttle Proqram, flyinq approximately 3C-B5 hours get _onth.

Pilot 'C" is a Boeinq pilot with his traini_,l re(eived ir the _,. S. ',avy.

Flight e×Derience consists of 6000 hours, 'nst of which h.Is b_en ir iarqe _-t



I

transport aircraft. As a []oeinq test pilot he has c_]nducted power ;;1ant l

i_erformante, stabi lity and contrr'l, fliqht load survey, automatic l,i lot,

structu_'al dynamics, and system testinq or, all Boein,4 jet aircraft i_clu,ji_,

the B-52 and KC-135. Presently he is a senior engineerinr] test igilot, _nd is

project pilot for the 737 model aircraft. He has also worked on _AS#, contracts

such as the Supersonic Transport Simulator, low-speed handlinc qualities

evaluations of large transports, steep approach studies, noise abatement

studies, and boundary layer control development work, all corducted or the

Boeing model 367-80. He vJas project pilot for the Auqmentor-Wimq Buffalo ard

has participated in preparation of the design proposal for the Quiet Short-Haul

Research Aircraft (QSRA).

Pilot "D" is a Boeing pilot with his fli(_ht training received in the Air

Force and from the ,_qavv Test Pilot School. His flight experience o r _,60S hOurS

includes approximately 4000 hours in large jet transports ar,d approximately

20 hours of supersonic fiiQht. He has about 400 hours of moving base sir;ulator

experience distributed over various research nroqrams. Presently, he is the

project pilot for the Carrier Aircraft Modification progra_ and the assistant

chief pilot for the experirlental 747 proqrams.

Pilot "E" Is a NASA research fJilot with his trainin_ received in the Marine

Corps. His flight e×peripnce of 8200 hours includes 2500 hours ir fighter"attac_

jet aircraft and 3200 hours in large jet transuort tyue aircraft. Uis

simulator n,perience is iv. excess of 7_0 hours in all classes o _ ai¢cra#t

(mostly lar_ie transports). Presently he flies ap_roximatel/ _,O ho_rS _er ,"ontb

in his capacity of a _4ASA research pilot.

Pilot "F' is a Boeing pilot wit_ 7 years ex;_erience _n the ,'it Force a_ _

years with The Boeing tom,an/. His Fli,]ht _xr, eriemce o* ,:_9"; hours "_(_le_

REV SYM
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"'I ..... _ and considerable time in the Boeln,:sm,lesupersor_i_t,iEl-e(T-3U and F-IOSj
I 9roduction aircraft (707, 727, 737, and 747). His simulator" experlerce

includes involvement in the initial SST handling Qualities studies arc_ ire

YC-la orogra_:. Ue has appro×imately 200 hours of moving base simulator-

experier, ce. He is presently a production pilot with The Boeing Company,

flying approximately 40-50 hours per month.

Pilot "G" is a _AI_A research pilot and a graduate of the Air Force Tes_ Pilct

School. ilis flight experience of approximately 400_ kours includes lO00 h(_u,s

in sin_jle-enqine jet fiqhters and trainers (F-lO0, F-lOa, T-33) and 2500 ho._,s

in multi-enqine jet transl,orts (C-135, C-141). His simulator experience

includes lO0 hours in the FSAA and ARC facilities. Presently he flies

approxi_atelk _(] hours per month in his capacity as a _F,SF_ research F,_'..,_t.
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